Spaces:
Running
Running
from argparse import Namespace | |
import os | |
import torch | |
import cv2 | |
from time import time | |
from pathlib import Path | |
import matplotlib.cm as cm | |
import numpy as np | |
from src.models.topic_fm import TopicFM | |
from src import get_model_cfg | |
from .base import Viz | |
from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors | |
from src.utils.plotting import draw_topics, draw_topicfm_demo, error_colormap | |
class VizTopicFM(Viz): | |
def __init__(self, args): | |
super().__init__() | |
if type(args) == dict: | |
args = Namespace(**args) | |
self.match_threshold = args.match_threshold | |
self.n_sampling_topics = args.n_sampling_topics | |
self.show_n_topics = args.show_n_topics | |
# Load model | |
conf = dict(get_model_cfg()) | |
conf["match_coarse"]["thr"] = self.match_threshold | |
conf["coarse"]["n_samples"] = self.n_sampling_topics | |
print("model config: ", conf) | |
self.model = TopicFM(config=conf) | |
ckpt_dict = torch.load(args.ckpt) | |
self.model.load_state_dict(ckpt_dict["state_dict"]) | |
self.model = self.model.eval().to(self.device) | |
# Name the method | |
# self.ckpt_name = args.ckpt.split('/')[-1].split('.')[0] | |
self.name = "TopicFM" | |
print(f"Initialize {self.name}") | |
def match_and_draw( | |
self, | |
data_dict, | |
root_dir=None, | |
ground_truth=False, | |
measure_time=False, | |
viz_matches=True, | |
): | |
if measure_time: | |
torch.cuda.synchronize() | |
start = torch.cuda.Event(enable_timing=True) | |
end = torch.cuda.Event(enable_timing=True) | |
start.record() | |
self.model(data_dict) | |
if measure_time: | |
torch.cuda.synchronize() | |
end.record() | |
torch.cuda.synchronize() | |
self.time_stats.append(start.elapsed_time(end)) | |
kpts0 = data_dict["mkpts0_f"].cpu().numpy() | |
kpts1 = data_dict["mkpts1_f"].cpu().numpy() | |
img_name0, img_name1 = list(zip(*data_dict["pair_names"]))[0] | |
img0 = cv2.imread(os.path.join(root_dir, img_name0)) | |
img1 = cv2.imread(os.path.join(root_dir, img_name1)) | |
if str(data_dict["dataset_name"][0]).lower() == "scannet": | |
img0 = cv2.resize(img0, (640, 480)) | |
img1 = cv2.resize(img1, (640, 480)) | |
if viz_matches: | |
saved_name = "_".join( | |
[ | |
img_name0.split("/")[-1].split(".")[0], | |
img_name1.split("/")[-1].split(".")[0], | |
] | |
) | |
folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name)) | |
if not os.path.exists(folder_matches): | |
os.makedirs(folder_matches) | |
path_to_save_matches = os.path.join( | |
folder_matches, "{}.png".format(saved_name) | |
) | |
if ground_truth: | |
compute_symmetrical_epipolar_errors( | |
data_dict | |
) # compute epi_errs for each match | |
compute_pose_errors( | |
data_dict | |
) # compute R_errs, t_errs, pose_errs for each pair | |
epi_errors = data_dict["epi_errs"].cpu().numpy() | |
R_errors, t_errors = data_dict["R_errs"][0], data_dict["t_errs"][0] | |
self.draw_matches( | |
kpts0, | |
kpts1, | |
img0, | |
img1, | |
epi_errors, | |
path=path_to_save_matches, | |
R_errs=R_errors, | |
t_errs=t_errors, | |
) | |
# compute evaluation metrics | |
rel_pair_names = list(zip(*data_dict["pair_names"])) | |
bs = data_dict["image0"].size(0) | |
metrics = { | |
# to filter duplicate pairs caused by DistributedSampler | |
"identifiers": ["#".join(rel_pair_names[b]) for b in range(bs)], | |
"epi_errs": [ | |
data_dict["epi_errs"][data_dict["m_bids"] == b].cpu().numpy() | |
for b in range(bs) | |
], | |
"R_errs": data_dict["R_errs"], | |
"t_errs": data_dict["t_errs"], | |
"inliers": data_dict["inliers"], | |
} | |
self.eval_stats.append({"metrics": metrics}) | |
else: | |
m_conf = 1 - data_dict["mconf"].cpu().numpy() | |
self.draw_matches( | |
kpts0, | |
kpts1, | |
img0, | |
img1, | |
m_conf, | |
path=path_to_save_matches, | |
conf_thr=0.4, | |
) | |
if self.show_n_topics > 0: | |
folder_topics = os.path.join( | |
root_dir, "{}_viz_topics".format(self.name) | |
) | |
if not os.path.exists(folder_topics): | |
os.makedirs(folder_topics) | |
draw_topics( | |
data_dict, | |
img0, | |
img1, | |
saved_folder=folder_topics, | |
show_n_topics=self.show_n_topics, | |
saved_name=saved_name, | |
) | |
def run_demo( | |
self, dataloader, writer=None, output_dir=None, no_display=False, skip_frames=1 | |
): | |
data_dict = next(dataloader) | |
frame_id = 0 | |
last_image_id = 0 | |
img0 = ( | |
np.array(cv2.imread(str(data_dict["img_path"][0])), dtype=np.float32) / 255 | |
) | |
frame_tensor = data_dict["img"].to(self.device) | |
pair_data = {"image0": frame_tensor} | |
last_frame = cv2.resize( | |
img0, (frame_tensor.shape[-1], frame_tensor.shape[-2]), cv2.INTER_LINEAR | |
) | |
if output_dir is not None: | |
print("==> Will write outputs to {}".format(output_dir)) | |
Path(output_dir).mkdir(exist_ok=True) | |
# Create a window to display the demo. | |
if not no_display: | |
window_name = "Topic-assisted Feature Matching" | |
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL) | |
cv2.resizeWindow(window_name, (640 * 2, 480 * 2)) | |
else: | |
print("Skipping visualization, will not show a GUI.") | |
# Print the keyboard help menu. | |
print( | |
"==> Keyboard control:\n" | |
"\tn: select the current frame as the reference image (left)\n" | |
"\tq: quit" | |
) | |
# vis_range = [kwargs["bottom_k"], kwargs["top_k"]] | |
while True: | |
frame_id += 1 | |
if frame_id == len(dataloader): | |
print("Finished demo_loftr.py") | |
break | |
data_dict = next(dataloader) | |
if frame_id % skip_frames != 0: | |
# print("Skipping frame.") | |
continue | |
stem0, stem1 = last_image_id, data_dict["id"][0].item() - 1 | |
frame = ( | |
np.array(cv2.imread(str(data_dict["img_path"][0])), dtype=np.float32) | |
/ 255 | |
) | |
frame_tensor = data_dict["img"].to(self.device) | |
frame = cv2.resize( | |
frame, | |
(frame_tensor.shape[-1], frame_tensor.shape[-2]), | |
interpolation=cv2.INTER_LINEAR, | |
) | |
pair_data = {**pair_data, "image1": frame_tensor} | |
self.model(pair_data) | |
total_n_matches = len(pair_data["mkpts0_f"]) | |
mkpts0 = pair_data["mkpts0_f"].cpu().numpy() # [vis_range[0]:vis_range[1]] | |
mkpts1 = pair_data["mkpts1_f"].cpu().numpy() # [vis_range[0]:vis_range[1]] | |
mconf = pair_data["mconf"].cpu().numpy() # [vis_range[0]:vis_range[1]] | |
# Normalize confidence. | |
if len(mconf) > 0: | |
mconf = 1 - mconf | |
# alpha = 0 | |
# color = cm.jet(mconf, alpha=alpha) | |
color = error_colormap(mconf, thr=0.4, alpha=0.1) | |
text = [ | |
f"Topics", | |
"#Matches: {}".format(total_n_matches), | |
] | |
out = draw_topicfm_demo( | |
pair_data, | |
last_frame, | |
frame, | |
mkpts0, | |
mkpts1, | |
color, | |
text, | |
show_n_topics=4, | |
path=None, | |
) | |
if not no_display: | |
if writer is not None: | |
writer.write(out) | |
cv2.imshow("TopicFM Matches", out) | |
key = chr(cv2.waitKey(10) & 0xFF) | |
if key == "q": | |
if writer is not None: | |
writer.release() | |
print("Exiting...") | |
break | |
elif key == "n": | |
pair_data["image0"] = frame_tensor | |
last_frame = frame | |
last_image_id = data_dict["id"][0].item() - 1 | |
frame_id_left = frame_id | |
elif output_dir is not None: | |
stem = "matches_{:06}_{:06}".format(stem0, stem1) | |
out_file = str(Path(output_dir, stem + ".png")) | |
print("\nWriting image to {}".format(out_file)) | |
cv2.imwrite(out_file, out) | |
else: | |
raise ValueError("output_dir is required when no display is given.") | |
cv2.destroyAllWindows() | |
if writer is not None: | |
writer.release() | |