Spaces:
Running
Running
import torch | |
import yaml | |
import time | |
from collections import OrderedDict, namedtuple | |
import os | |
import sys | |
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.insert(0, ROOT_DIR) | |
from sgmnet import matcher as SGM_Model | |
from superglue import matcher as SG_Model | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--matcher_name", type=str, default="SGM", help="number of processes." | |
) | |
parser.add_argument( | |
"--config_path", | |
type=str, | |
default="configs/cost/sgm_cost.yaml", | |
help="number of processes.", | |
) | |
parser.add_argument( | |
"--num_kpt", type=int, default=4000, help="keypoint number, default:100" | |
) | |
parser.add_argument( | |
"--iter_num", type=int, default=100, help="keypoint number, default:100" | |
) | |
def test_cost(test_data, model): | |
with torch.no_grad(): | |
# warm up call | |
_ = model(test_data) | |
torch.cuda.synchronize() | |
a = time.time() | |
for _ in range(int(args.iter_num)): | |
_ = model(test_data) | |
torch.cuda.synchronize() | |
b = time.time() | |
print("Average time per run(ms): ", (b - a) / args.iter_num * 1e3) | |
print("Peak memory(MB): ", torch.cuda.max_memory_allocated() / 1e6) | |
if __name__ == "__main__": | |
torch.backends.cudnn.benchmark = False | |
args = parser.parse_args() | |
with open(args.config_path, "r") as f: | |
model_config = yaml.load(f) | |
model_config = namedtuple("model_config", model_config.keys())( | |
*model_config.values() | |
) | |
if args.matcher_name == "SGM": | |
model = SGM_Model(model_config) | |
elif args.matcher_name == "SG": | |
model = SG_Model(model_config) | |
model.cuda(), model.eval() | |
test_data = { | |
"x1": torch.rand(1, args.num_kpt, 2).cuda() - 0.5, | |
"x2": torch.rand(1, args.num_kpt, 2).cuda() - 0.5, | |
"desc1": torch.rand(1, args.num_kpt, 128).cuda(), | |
"desc2": torch.rand(1, args.num_kpt, 128).cuda(), | |
} | |
test_cost(test_data, model) | |