Spaces:
Running
Running
import cv2 | |
import os | |
from tqdm import tqdm | |
import torch | |
import numpy as np | |
from extract import extract_method | |
use_cuda = torch.cuda.is_available() | |
device = torch.device("cuda" if use_cuda else "cpu") | |
methods = [ | |
"d2", | |
"lfnet", | |
"superpoint", | |
"r2d2", | |
"aslfeat", | |
"disk", | |
"alike-n", | |
"alike-l", | |
"alike-n-ms", | |
"alike-l-ms", | |
] | |
names = [ | |
"D2-Net(MS)", | |
"LF-Net(MS)", | |
"SuperPoint", | |
"R2D2(MS)", | |
"ASLFeat(MS)", | |
"DISK", | |
"ALike-N", | |
"ALike-L", | |
"ALike-N(MS)", | |
"ALike-L(MS)", | |
] | |
top_k = None | |
n_i = 52 | |
n_v = 56 | |
cache_dir = "hseq/cache" | |
dataset_path = "hseq/hpatches-sequences-release" | |
def generate_read_function(method, extension="ppm"): | |
def read_function(seq_name, im_idx): | |
aux = np.load( | |
os.path.join( | |
dataset_path, seq_name, "%d.%s.%s" % (im_idx, extension, method) | |
) | |
) | |
if top_k is None: | |
return aux["keypoints"], aux["descriptors"] | |
else: | |
assert "scores" in aux | |
ids = np.argsort(aux["scores"])[-top_k:] | |
return aux["keypoints"][ids, :], aux["descriptors"][ids, :] | |
return read_function | |
def mnn_matcher(descriptors_a, descriptors_b): | |
device = descriptors_a.device | |
sim = descriptors_a @ descriptors_b.t() | |
nn12 = torch.max(sim, dim=1)[1] | |
nn21 = torch.max(sim, dim=0)[1] | |
ids1 = torch.arange(0, sim.shape[0], device=device) | |
mask = ids1 == nn21[nn12] | |
matches = torch.stack([ids1[mask], nn12[mask]]) | |
return matches.t().data.cpu().numpy() | |
def homo_trans(coord, H): | |
kpt_num = coord.shape[0] | |
homo_coord = np.concatenate((coord, np.ones((kpt_num, 1))), axis=-1) | |
proj_coord = np.matmul(H, homo_coord.T).T | |
proj_coord = proj_coord / proj_coord[:, 2][..., None] | |
proj_coord = proj_coord[:, 0:2] | |
return proj_coord | |
def benchmark_features(read_feats): | |
lim = [1, 5] | |
rng = np.arange(lim[0], lim[1] + 1) | |
seq_names = sorted(os.listdir(dataset_path)) | |
n_feats = [] | |
n_matches = [] | |
seq_type = [] | |
i_err = {thr: 0 for thr in rng} | |
v_err = {thr: 0 for thr in rng} | |
i_err_homo = {thr: 0 for thr in rng} | |
v_err_homo = {thr: 0 for thr in rng} | |
for seq_idx, seq_name in tqdm(enumerate(seq_names), total=len(seq_names)): | |
keypoints_a, descriptors_a = read_feats(seq_name, 1) | |
n_feats.append(keypoints_a.shape[0]) | |
# =========== compute homography | |
ref_img = cv2.imread(os.path.join(dataset_path, seq_name, "1.ppm")) | |
ref_img_shape = ref_img.shape | |
for im_idx in range(2, 7): | |
keypoints_b, descriptors_b = read_feats(seq_name, im_idx) | |
n_feats.append(keypoints_b.shape[0]) | |
matches = mnn_matcher( | |
torch.from_numpy(descriptors_a).to(device=device), | |
torch.from_numpy(descriptors_b).to(device=device), | |
) | |
homography = np.loadtxt( | |
os.path.join(dataset_path, seq_name, "H_1_" + str(im_idx)) | |
) | |
pos_a = keypoints_a[matches[:, 0], :2] | |
pos_a_h = np.concatenate([pos_a, np.ones([matches.shape[0], 1])], axis=1) | |
pos_b_proj_h = np.transpose(np.dot(homography, np.transpose(pos_a_h))) | |
pos_b_proj = pos_b_proj_h[:, :2] / pos_b_proj_h[:, 2:] | |
pos_b = keypoints_b[matches[:, 1], :2] | |
dist = np.sqrt(np.sum((pos_b - pos_b_proj) ** 2, axis=1)) | |
n_matches.append(matches.shape[0]) | |
seq_type.append(seq_name[0]) | |
if dist.shape[0] == 0: | |
dist = np.array([float("inf")]) | |
for thr in rng: | |
if seq_name[0] == "i": | |
i_err[thr] += np.mean(dist <= thr) | |
else: | |
v_err[thr] += np.mean(dist <= thr) | |
# =========== compute homography | |
gt_homo = homography | |
pred_homo, _ = cv2.findHomography( | |
keypoints_a[matches[:, 0], :2], | |
keypoints_b[matches[:, 1], :2], | |
cv2.RANSAC, | |
) | |
if pred_homo is None: | |
homo_dist = np.array([float("inf")]) | |
else: | |
corners = np.array( | |
[ | |
[0, 0], | |
[ref_img_shape[1] - 1, 0], | |
[0, ref_img_shape[0] - 1], | |
[ref_img_shape[1] - 1, ref_img_shape[0] - 1], | |
] | |
) | |
real_warped_corners = homo_trans(corners, gt_homo) | |
warped_corners = homo_trans(corners, pred_homo) | |
homo_dist = np.mean( | |
np.linalg.norm(real_warped_corners - warped_corners, axis=1) | |
) | |
for thr in rng: | |
if seq_name[0] == "i": | |
i_err_homo[thr] += np.mean(homo_dist <= thr) | |
else: | |
v_err_homo[thr] += np.mean(homo_dist <= thr) | |
seq_type = np.array(seq_type) | |
n_feats = np.array(n_feats) | |
n_matches = np.array(n_matches) | |
return i_err, v_err, i_err_homo, v_err_homo, [seq_type, n_feats, n_matches] | |
if __name__ == "__main__": | |
errors = {} | |
for method in methods: | |
output_file = os.path.join(cache_dir, method + ".npy") | |
read_function = generate_read_function(method) | |
if os.path.exists(output_file): | |
errors[method] = np.load(output_file, allow_pickle=True) | |
else: | |
extract_method(method) | |
errors[method] = benchmark_features(read_function) | |
np.save(output_file, errors[method]) | |
for name, method in zip(names, methods): | |
i_err, v_err, i_err_hom, v_err_hom, _ = errors[method] | |
print(f"====={name}=====") | |
print(f"MMA@1 MMA@2 MMA@3 MHA@1 MHA@2 MHA@3: ", end="") | |
for thr in range(1, 4): | |
err = (i_err[thr] + v_err[thr]) / ((n_i + n_v) * 5) | |
print(f"{err * 100:.2f}%", end=" ") | |
for thr in range(1, 4): | |
err_hom = (i_err_hom[thr] + v_err_hom[thr]) / ((n_i + n_v) * 5) | |
print(f"{err_hom * 100:.2f}%", end=" ") | |
print("") | |