Vincentqyw
fix: roma
358ab8f
raw
history blame
7.34 kB
import argparse
import numpy as np
import os
import shutil
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import warnings
from lib.dataset import MegaDepthDataset
from lib.exceptions import NoGradientError
from lib.loss import loss_function
from lib.model import D2Net
# CUDA
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
# Seed
torch.manual_seed(1)
if use_cuda:
torch.cuda.manual_seed(1)
np.random.seed(1)
# Argument parsing
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument(
"--dataset_path", type=str, required=True, help="path to the dataset"
)
parser.add_argument(
"--scene_info_path", type=str, required=True, help="path to the processed scenes"
)
parser.add_argument(
"--preprocessing",
type=str,
default="caffe",
help="image preprocessing (caffe or torch)",
)
parser.add_argument(
"--model_file", type=str, default="models/d2_ots.pth", help="path to the full model"
)
parser.add_argument(
"--num_epochs", type=int, default=10, help="number of training epochs"
)
parser.add_argument("--lr", type=float, default=1e-3, help="initial learning rate")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument(
"--num_workers", type=int, default=4, help="number of workers for data loading"
)
parser.add_argument(
"--use_validation",
dest="use_validation",
action="store_true",
help="use the validation split",
)
parser.set_defaults(use_validation=False)
parser.add_argument(
"--log_interval", type=int, default=250, help="loss logging interval"
)
parser.add_argument("--log_file", type=str, default="log.txt", help="loss logging file")
parser.add_argument(
"--plot", dest="plot", action="store_true", help="plot training pairs"
)
parser.set_defaults(plot=False)
parser.add_argument(
"--checkpoint_directory",
type=str,
default="checkpoints",
help="directory for training checkpoints",
)
parser.add_argument(
"--checkpoint_prefix",
type=str,
default="d2",
help="prefix for training checkpoints",
)
args = parser.parse_args()
print(args)
# Create the folders for plotting if need be
if args.plot:
plot_path = "train_vis"
if os.path.isdir(plot_path):
print("[Warning] Plotting directory already exists.")
else:
os.mkdir(plot_path)
# Creating CNN model
model = D2Net(model_file=args.model_file, use_cuda=use_cuda)
# Optimizer
optimizer = optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr
)
# Dataset
if args.use_validation:
validation_dataset = MegaDepthDataset(
scene_list_path="megadepth_utils/valid_scenes.txt",
scene_info_path=args.scene_info_path,
base_path=args.dataset_path,
train=False,
preprocessing=args.preprocessing,
pairs_per_scene=25,
)
validation_dataloader = DataLoader(
validation_dataset, batch_size=args.batch_size, num_workers=args.num_workers
)
training_dataset = MegaDepthDataset(
scene_list_path="megadepth_utils/train_scenes.txt",
scene_info_path=args.scene_info_path,
base_path=args.dataset_path,
preprocessing=args.preprocessing,
)
training_dataloader = DataLoader(
training_dataset, batch_size=args.batch_size, num_workers=args.num_workers
)
# Define epoch function
def process_epoch(
epoch_idx,
model,
loss_function,
optimizer,
dataloader,
device,
log_file,
args,
train=True,
):
epoch_losses = []
torch.set_grad_enabled(train)
progress_bar = tqdm(enumerate(dataloader), total=len(dataloader))
for batch_idx, batch in progress_bar:
if train:
optimizer.zero_grad()
batch["train"] = train
batch["epoch_idx"] = epoch_idx
batch["batch_idx"] = batch_idx
batch["batch_size"] = args.batch_size
batch["preprocessing"] = args.preprocessing
batch["log_interval"] = args.log_interval
try:
loss = loss_function(model, batch, device, plot=args.plot)
except NoGradientError:
continue
current_loss = loss.data.cpu().numpy()[0]
epoch_losses.append(current_loss)
progress_bar.set_postfix(loss=("%.4f" % np.mean(epoch_losses)))
if batch_idx % args.log_interval == 0:
log_file.write(
"[%s] epoch %d - batch %d / %d - avg_loss: %f\n"
% (
"train" if train else "valid",
epoch_idx,
batch_idx,
len(dataloader),
np.mean(epoch_losses),
)
)
if train:
loss.backward()
optimizer.step()
log_file.write(
"[%s] epoch %d - avg_loss: %f\n"
% ("train" if train else "valid", epoch_idx, np.mean(epoch_losses))
)
log_file.flush()
return np.mean(epoch_losses)
# Create the checkpoint directory
if os.path.isdir(args.checkpoint_directory):
print("[Warning] Checkpoint directory already exists.")
else:
os.mkdir(args.checkpoint_directory)
# Open the log file for writing
if os.path.exists(args.log_file):
print("[Warning] Log file already exists.")
log_file = open(args.log_file, "a+")
# Initialize the history
train_loss_history = []
validation_loss_history = []
if args.use_validation:
validation_dataset.build_dataset()
min_validation_loss = process_epoch(
0,
model,
loss_function,
optimizer,
validation_dataloader,
device,
log_file,
args,
train=False,
)
# Start the training
for epoch_idx in range(1, args.num_epochs + 1):
# Process epoch
training_dataset.build_dataset()
train_loss_history.append(
process_epoch(
epoch_idx,
model,
loss_function,
optimizer,
training_dataloader,
device,
log_file,
args,
)
)
if args.use_validation:
validation_loss_history.append(
process_epoch(
epoch_idx,
model,
loss_function,
optimizer,
validation_dataloader,
device,
log_file,
args,
train=False,
)
)
# Save the current checkpoint
checkpoint_path = os.path.join(
args.checkpoint_directory, "%s.%02d.pth" % (args.checkpoint_prefix, epoch_idx)
)
checkpoint = {
"args": args,
"epoch_idx": epoch_idx,
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"train_loss_history": train_loss_history,
"validation_loss_history": validation_loss_history,
}
torch.save(checkpoint, checkpoint_path)
if args.use_validation and validation_loss_history[-1] < min_validation_loss:
min_validation_loss = validation_loss_history[-1]
best_checkpoint_path = os.path.join(
args.checkpoint_directory, "%s.best.pth" % args.checkpoint_prefix
)
shutil.copy(checkpoint_path, best_checkpoint_path)
# Close the log file
log_file.close()