Spaces:
Running
Running
import numpy as np | |
import random | |
from scipy.stats import tukeylambda | |
camera_params = { | |
"Kmin": 0.2181895124454343, | |
"Kmax": 3.0, | |
"G_shape": np.array( | |
[ | |
0.15714286, | |
0.14285714, | |
0.08571429, | |
0.08571429, | |
0.2, | |
0.2, | |
0.1, | |
0.08571429, | |
0.05714286, | |
0.07142857, | |
0.02857143, | |
0.02857143, | |
0.01428571, | |
0.02857143, | |
0.08571429, | |
0.07142857, | |
0.11428571, | |
0.11428571, | |
] | |
), | |
"Profile-1": { | |
"R_scale": { | |
"slope": 0.4712797750747537, | |
"bias": -0.8078958947116487, | |
"sigma": 0.2436176299944695, | |
}, | |
"g_scale": { | |
"slope": 0.6771267783987617, | |
"bias": 1.5121876510805845, | |
"sigma": 0.24641096601611254, | |
}, | |
"G_scale": { | |
"slope": 0.6558756156508007, | |
"bias": 1.09268679594838, | |
"sigma": 0.28604721742277756, | |
}, | |
}, | |
"black_level": 2048, | |
"max_value": 16383, | |
} | |
# photon shot noise | |
def addPStarNoise(img, K): | |
return np.random.poisson(img / K).astype(np.float32) * K | |
# read noise | |
# tukey lambda distribution | |
def addGStarNoise(img, K, G_shape, G_scale_param): | |
# sample a shape parameter [lambda] from histogram of samples | |
a, b = np.histogram(G_shape, bins=10, range=(-0.25, 0.25)) | |
a, b = np.array(a), np.array(b) | |
a = a / a.sum() | |
rand_num = random.uniform(0, 1) | |
idx = np.sum(np.cumsum(a) < rand_num) | |
lam = random.uniform(b[idx], b[idx + 1]) | |
# calculate scale parameter [G_scale] | |
log_K = np.log(K) | |
log_G_scale = ( | |
np.random.standard_normal() * G_scale_param["sigma"] * 1 | |
+ G_scale_param["slope"] * log_K | |
+ G_scale_param["bias"] | |
) | |
G_scale = np.exp(log_G_scale) | |
# print(f'G_scale: {G_scale}') | |
return img + tukeylambda.rvs(lam, scale=G_scale, size=img.shape).astype(np.float32) | |
# row noise | |
# uniform distribution for each row | |
def addRowNoise(img, K, R_scale_param): | |
# calculate scale parameter [R_scale] | |
log_K = np.log(K) | |
log_R_scale = ( | |
np.random.standard_normal() * R_scale_param["sigma"] * 1 | |
+ R_scale_param["slope"] * log_K | |
+ R_scale_param["bias"] | |
) | |
R_scale = np.exp(log_R_scale) | |
# print(f'R_scale: {R_scale}') | |
row_noise = np.random.randn(img.shape[0], 1).astype(np.float32) * R_scale | |
return img + np.tile(row_noise, (1, img.shape[1])) | |
# quantization noise | |
# uniform distribution | |
def addQuantNoise(img, q): | |
return img + np.random.uniform(low=-0.5 * q, high=0.5 * q, size=img.shape) | |
def sampleK(Kmin, Kmax): | |
return np.exp(np.random.uniform(low=np.log(Kmin), high=np.log(Kmax))) | |