Spaces:
Running
Running
import os | |
import numpy as np | |
import torch | |
from torch.utils.data import Dataset | |
from random import shuffle, seed | |
from .gl3d.io import read_list, _parse_img, _parse_depth, _parse_kpts | |
from .utils.common import Notify | |
from .utils.photaug import photaug | |
class GL3DDataset(Dataset): | |
def __init__(self, dataset_dir, config, data_split, is_training): | |
self.dataset_dir = dataset_dir | |
self.config = config | |
self.is_training = is_training | |
self.data_split = data_split | |
( | |
self.match_set_list, | |
self.global_img_list, | |
self.global_depth_list, | |
) = self.prepare_match_sets() | |
pass | |
def __len__(self): | |
return len(self.match_set_list) | |
def __getitem__(self, idx): | |
match_set_path = self.match_set_list[idx] | |
decoded = np.fromfile(match_set_path, dtype=np.float32) | |
idx0, idx1 = int(decoded[0]), int(decoded[1]) | |
inlier_num = int(decoded[2]) | |
ori_img_size0 = np.reshape(decoded[3:5], (2,)) | |
ori_img_size1 = np.reshape(decoded[5:7], (2,)) | |
K0 = np.reshape(decoded[7:16], (3, 3)) | |
K1 = np.reshape(decoded[16:25], (3, 3)) | |
rel_pose = np.reshape(decoded[34:46], (3, 4)) | |
# parse images. | |
img0 = _parse_img(self.global_img_list, idx0, self.config) | |
img1 = _parse_img(self.global_img_list, idx1, self.config) | |
# parse depths | |
depth0 = _parse_depth(self.global_depth_list, idx0, self.config) | |
depth1 = _parse_depth(self.global_depth_list, idx1, self.config) | |
# photometric augmentation | |
img0 = photaug(img0) | |
img1 = photaug(img1) | |
return { | |
"img0": img0 / 255.0, | |
"img1": img1 / 255.0, | |
"depth0": depth0, | |
"depth1": depth1, | |
"ori_img_size0": ori_img_size0, | |
"ori_img_size1": ori_img_size1, | |
"K0": K0, | |
"K1": K1, | |
"rel_pose": rel_pose, | |
"inlier_num": inlier_num, | |
} | |
def points_to_2D(self, pnts, H, W): | |
labels = np.zeros((H, W)) | |
pnts = pnts.astype(int) | |
labels[pnts[:, 1], pnts[:, 0]] = 1 | |
return labels | |
def prepare_match_sets(self, q_diff_thld=3, rot_diff_thld=60): | |
"""Get match sets. | |
Args: | |
is_training: Use training imageset or testing imageset. | |
data_split: Data split name. | |
Returns: | |
match_set_list: List of match sets path. | |
global_img_list: List of global image path. | |
global_context_feat_list: | |
""" | |
# get necessary lists. | |
gl3d_list_folder = os.path.join(self.dataset_dir, "list", self.data_split) | |
global_info = read_list( | |
os.path.join(gl3d_list_folder, "image_index_offset.txt") | |
) | |
global_img_list = [ | |
os.path.join(self.dataset_dir, i) | |
for i in read_list(os.path.join(gl3d_list_folder, "image_list.txt")) | |
] | |
global_depth_list = [ | |
os.path.join(self.dataset_dir, i) | |
for i in read_list(os.path.join(gl3d_list_folder, "depth_list.txt")) | |
] | |
imageset_list_name = ( | |
"imageset_train.txt" if self.is_training else "imageset_test.txt" | |
) | |
match_set_list = self.get_match_set_list( | |
os.path.join(gl3d_list_folder, imageset_list_name), | |
q_diff_thld, | |
rot_diff_thld, | |
) | |
return match_set_list, global_img_list, global_depth_list | |
def get_match_set_list(self, imageset_list_path, q_diff_thld, rot_diff_thld): | |
"""Get the path list of match sets. | |
Args: | |
imageset_list_path: Path to imageset list. | |
q_diff_thld: Threshold of image pair sampling regarding camera orientation. | |
Returns: | |
match_set_list: List of match set path. | |
""" | |
imageset_list = [ | |
os.path.join(self.dataset_dir, "data", i) | |
for i in read_list(imageset_list_path) | |
] | |
print(Notify.INFO, "Use # imageset", len(imageset_list), Notify.ENDC) | |
match_set_list = [] | |
# discard image pairs whose image simiarity is beyond the threshold. | |
for i in imageset_list: | |
match_set_folder = os.path.join(i, "match_sets") | |
if os.path.exists(match_set_folder): | |
match_set_files = os.listdir(match_set_folder) | |
for val in match_set_files: | |
name, ext = os.path.splitext(val) | |
if ext == ".match_set": | |
splits = name.split("_") | |
q_diff = int(splits[2]) | |
rot_diff = int(splits[3]) | |
if q_diff >= q_diff_thld and rot_diff <= rot_diff_thld: | |
match_set_list.append(os.path.join(match_set_folder, val)) | |
print(Notify.INFO, "Get # match sets", len(match_set_list), Notify.ENDC) | |
return match_set_list | |