image-matching-webui / third_party /COTR /scripts /prepare_nn_distance_mat.py
Realcat
add: COTR(https://github.com/ubc-vision/COTR)
10dcc2e
raw
history blame
5.8 kB
'''
compute distance matrix for megadepth using ComputeCanada
'''
import sys
sys.path.append('..')
import os
import argparse
import numpy as np
from joblib import Parallel, delayed
from tqdm import tqdm
from COTR.options.options import *
from COTR.options.options_utils import *
from COTR.utils import debug_utils, utils, constants
from COTR.datasets import colmap_helper
from COTR.projector import pcd_projector
from COTR.global_configs import dataset_config
assert colmap_helper.COVISIBILITY_CHECK, 'Please enable COVISIBILITY_CHECK'
assert colmap_helper.LOAD_PCD, 'Please enable LOAD_PCD'
OFFSET_THRESHOLD = 1.0
def get_index_pairs(dist_mat, cells):
pairs = []
for row in range(dist_mat.shape[0]):
for col in range(dist_mat.shape[0]):
if dist_mat[row][col] == -1:
pairs.append([row, col])
if len(pairs) == cells:
return pairs
return pairs
def load_dist_mat(path, size=None):
if os.path.isfile(path):
dist_mat = np.load(path)
assert dist_mat.shape[0] == dist_mat.shape[1]
else:
dist_mat = np.ones([size, size], dtype=np.float32) * -1
assert dist_mat.shape[0] == dist_mat.shape[1]
return dist_mat
def distance_between_two_caps(caps):
cap_1, cap_2 = caps
try:
if len(np.intersect1d(cap_1.point3d_id, cap_2.point3d_id)) == 0:
return 0.0
pcd = cap_2.point_cloud_world
extrin_cap_1 = cap_1.cam_pose.world_to_camera[0:3, :]
intrin_cap_1 = cap_1.pinhole_cam.intrinsic_mat
size = cap_1.pinhole_cam.shape[:2]
reproj = pcd_projector.PointCloudProjector.pcd_3d_to_pcd_2d_np(pcd[:, 0:3], intrin_cap_1, extrin_cap_1, size, keep_z=True, crop=True, filter_neg=True, norm_coord=False)
reproj = pcd_projector.PointCloudProjector.pcd_2d_to_img_2d_np(reproj, size)[..., 0]
# 1. calculate the iou
query_mask = cap_1.depth_map > 0
reproj_mask = reproj > 0
intersection_mask = query_mask * reproj_mask
union_mask = query_mask | reproj_mask
if union_mask.sum() == 0:
return 0.0
intersection_mask = (abs(cap_1.depth_map - reproj) * intersection_mask < OFFSET_THRESHOLD) * intersection_mask
ratio = intersection_mask.sum() / union_mask.sum()
if ratio == 0.0:
return 0.0
return ratio
except Exception as e:
print(e)
return 0.0
def fill_covisibility(scene, dist_mat):
for i in range(dist_mat.shape[0]):
nns = scene.get_covisible_caps(scene[i])
covis_list = [scene.img_id_to_index_dict[cap.image_id] for cap in nns]
for j in range(dist_mat.shape[0]):
if j not in covis_list:
dist_mat[i][j] = 0
return dist_mat
def main(opt):
# fast fail
try:
dist_mat = load_dist_mat(opt.out_path)
if dist_mat.min() >= 0.0:
print(f'{opt.out_path} is complete!')
exit()
else:
print('continue working')
except Exception as e:
print(e)
print('first time start working')
scene_dir = opt.scenes_name_list[0]['scene_dir']
image_dir = opt.scenes_name_list[0]['image_dir']
depth_dir = opt.scenes_name_list[0]['depth_dir']
scene = colmap_helper.ColmapWithDepthAsciiReader.read_sfm_scene_given_valid_list_path(scene_dir, image_dir, depth_dir, dataset_config[opt.dataset_name]['valid_list_json'], opt.crop_cam)
size = len(scene.captures)
dist_mat = load_dist_mat(opt.out_path, size)
if opt.use_ram:
scene.read_data_to_ram(['depth'])
if dist_mat.max() == -1:
dist_mat = fill_covisibility(scene, dist_mat)
np.save(opt.out_path, dist_mat)
pairs = get_index_pairs(dist_mat, opt.cells)
in_pairs = [[scene[p[0]], scene[p[1]]] for p in pairs]
results = Parallel(n_jobs=opt.num_cpus)(delayed(distance_between_two_caps)(pair) for pair in tqdm(in_pairs, desc='calculating distance matrix', total=len(in_pairs)))
for i, p in enumerate(pairs):
r, c = p
dist_mat[r][c] = results[i]
np.save(opt.out_path, dist_mat)
print(f'finished from {pairs[0][0]}-{pairs[0][1]} -> {pairs[-1][0]}-{pairs[-1][1]}')
print(f'in total {len(pairs)} cells')
print(f'progress {(dist_mat >= 0).sum() / dist_mat.size}')
print(f'save at {opt.out_path}')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
set_general_arguments(parser)
parser.add_argument('--dataset_name', type=str, default='megadepth', help='dataset name')
parser.add_argument('--use_ram', type=str2bool, default=False, help='load image/depth to ram')
parser.add_argument('--info_level', type=str, default='rgbd', help='the information level of dataset')
parser.add_argument('--scene', type=str, default='0000', required=True, help='what scene want to use')
parser.add_argument('--seq', type=str, default='0', required=True, help='what seq want to use')
parser.add_argument('--crop_cam', choices=['no_crop', 'crop_center', 'crop_center_and_resize'], type=str, default='no_crop', help='crop the center of image to avoid changing aspect ratio, resize to make the operations batch-able.')
parser.add_argument('--cells', type=int, default=10000, help='the number of cells to be computed in this run')
parser.add_argument('--num_cpus', type=int, default=6, help='num of cores')
opt = parser.parse_args()
opt.scenes_name_list = options_utils.build_scenes_name_list_from_opt(opt)
opt.out_dir = os.path.join(os.path.dirname(opt.scenes_name_list[0]['depth_dir']), 'dist_mat')
opt.out_path = os.path.join(opt.out_dir, 'dist_mat.npy')
os.makedirs(opt.out_dir, exist_ok=True)
if opt.confirm:
confirm_opt(opt)
else:
print_opt(opt)
main(opt)