Spaces:
Running
Running
''' | |
Feature-free COTR guided matching for keypoints. | |
We use DISK(https://github.com/cvlab-epfl/disk) keypoints location. | |
We apply RANSAC + F matrix to further prune outliers. | |
Note: This script doesn't use descriptors. | |
''' | |
import argparse | |
import os | |
import time | |
import cv2 | |
import numpy as np | |
import torch | |
import imageio | |
from scipy.spatial import distance_matrix | |
from COTR.utils import utils, debug_utils | |
from COTR.models import build_model | |
from COTR.options.options import * | |
from COTR.options.options_utils import * | |
from COTR.inference.sparse_engine import SparseEngine, FasterSparseEngine | |
utils.fix_randomness(0) | |
torch.set_grad_enabled(False) | |
def main(opt): | |
model = build_model(opt) | |
model = model.cuda() | |
weights = torch.load(opt.load_weights_path)['model_state_dict'] | |
utils.safe_load_weights(model, weights) | |
model = model.eval() | |
img_a = imageio.imread('./sample_data/imgs/21526113_4379776807.jpg') | |
img_b = imageio.imread('./sample_data/imgs/21126421_4537535153.jpg') | |
kp_a = np.load('./sample_data/21526113_4379776807.jpg.disk.kpts.npy') | |
kp_b = np.load('./sample_data/21126421_4537535153.jpg.disk.kpts.npy') | |
if opt.faster_infer: | |
engine = FasterSparseEngine(model, 32, mode='tile') | |
else: | |
engine = SparseEngine(model, 32, mode='tile') | |
t0 = time.time() | |
corrs_a_b = engine.cotr_corr_multiscale(img_a, img_b, np.linspace(0.5, 0.0625, 4), 1, max_corrs=kp_a.shape[0], queries_a=kp_a, force=True) | |
corrs_b_a = engine.cotr_corr_multiscale(img_b, img_a, np.linspace(0.5, 0.0625, 4), 1, max_corrs=kp_b.shape[0], queries_a=kp_b, force=True) | |
t1 = time.time() | |
print(f'COTR spent {t1-t0} seconds.') | |
inds_a_b = np.argmin(distance_matrix(corrs_a_b[:, 2:], kp_b), axis=1) | |
matched_a_b = np.stack([np.arange(kp_a.shape[0]), inds_a_b]).T | |
inds_b_a = np.argmin(distance_matrix(corrs_b_a[:, 2:], kp_a), axis=1) | |
matched_b_a = np.stack([np.arange(kp_b.shape[0]), inds_b_a]).T | |
good = 0 | |
final_matches = [] | |
for m_ab in matched_a_b: | |
for m_ba in matched_b_a: | |
if (m_ab == m_ba[::-1]).all(): | |
good += 1 | |
final_matches.append(m_ab) | |
break | |
final_matches = np.array(final_matches) | |
final_corrs = np.concatenate([kp_a[final_matches[:, 0]], kp_b[final_matches[:, 1]]], axis=1) | |
_, mask = cv2.findFundamentalMat(final_corrs[:, :2], final_corrs[:, 2:], cv2.FM_RANSAC, ransacReprojThreshold=5, confidence=0.999999) | |
utils.visualize_corrs(img_a, img_b, final_corrs[np.where(mask[:, 0])]) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
set_COTR_arguments(parser) | |
parser.add_argument('--out_dir', type=str, default=general_config['out'], help='out directory') | |
parser.add_argument('--load_weights', type=str, default=None, help='load a pretrained set of weights, you need to provide the model id') | |
parser.add_argument('--faster_infer', type=str2bool, default=False, help='use fatser inference') | |
opt = parser.parse_args() | |
opt.command = ' '.join(sys.argv) | |
layer_2_channels = {'layer1': 256, | |
'layer2': 512, | |
'layer3': 1024, | |
'layer4': 2048, } | |
opt.dim_feedforward = layer_2_channels[opt.layer] | |
if opt.load_weights: | |
opt.load_weights_path = os.path.join(opt.out_dir, opt.load_weights, 'checkpoint.pth.tar') | |
print_opt(opt) | |
main(opt) | |