Spaces:
Running
Running
import torch | |
from sklearn.cluster import DBSCAN | |
from .. import get_model | |
from ..base_model import BaseModel | |
def sample_descriptors_corner_conv(keypoints, descriptors, s: int = 8): | |
"""Interpolate descriptors at keypoint locations""" | |
b, c, h, w = descriptors.shape | |
keypoints = keypoints / (keypoints.new_tensor([w, h]) * s) | |
keypoints = keypoints * 2 - 1 # normalize to (-1, 1) | |
descriptors = torch.nn.functional.grid_sample( | |
descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", align_corners=False | |
) | |
descriptors = torch.nn.functional.normalize( | |
descriptors.reshape(b, c, -1), p=2, dim=1 | |
) | |
return descriptors | |
def lines_to_wireframe( | |
lines, line_scores, all_descs, s, nms_radius, force_num_lines, max_num_lines | |
): | |
"""Given a set of lines, their score and dense descriptors, | |
merge close-by endpoints and compute a wireframe defined by | |
its junctions and connectivity. | |
Returns: | |
junctions: list of [num_junc, 2] tensors listing all wireframe junctions | |
junc_scores: list of [num_junc] tensors with the junction score | |
junc_descs: list of [dim, num_junc] tensors with the junction descriptors | |
connectivity: list of [num_junc, num_junc] bool arrays with True when 2 | |
junctions are connected | |
new_lines: the new set of [b_size, num_lines, 2, 2] lines | |
lines_junc_idx: a [b_size, num_lines, 2] tensor with the indices of the | |
junctions of each endpoint | |
num_true_junctions: a list of the number of valid junctions for each image | |
in the batch, i.e. before filling with random ones | |
""" | |
b_size, _, h, w = all_descs.shape | |
device = lines.device | |
h, w = h * s, w * s | |
endpoints = lines.reshape(b_size, -1, 2) | |
( | |
junctions, | |
junc_scores, | |
connectivity, | |
new_lines, | |
lines_junc_idx, | |
num_true_junctions, | |
) = ([], [], [], [], [], []) | |
for bs in range(b_size): | |
# Cluster the junctions that are close-by | |
db = DBSCAN(eps=nms_radius, min_samples=1).fit(endpoints[bs].cpu().numpy()) | |
clusters = db.labels_ | |
n_clusters = len(set(clusters)) | |
num_true_junctions.append(n_clusters) | |
# Compute the average junction and score for each cluster | |
clusters = torch.tensor(clusters, dtype=torch.long, device=device) | |
new_junc = torch.zeros(n_clusters, 2, dtype=torch.float, device=device) | |
new_junc.scatter_reduce_( | |
0, | |
clusters[:, None].repeat(1, 2), | |
endpoints[bs], | |
reduce="mean", | |
include_self=False, | |
) | |
junctions.append(new_junc) | |
new_scores = torch.zeros(n_clusters, dtype=torch.float, device=device) | |
new_scores.scatter_reduce_( | |
0, | |
clusters, | |
torch.repeat_interleave(line_scores[bs], 2), | |
reduce="mean", | |
include_self=False, | |
) | |
junc_scores.append(new_scores) | |
# Compute the new lines | |
new_lines.append(junctions[-1][clusters].reshape(-1, 2, 2)) | |
lines_junc_idx.append(clusters.reshape(-1, 2)) | |
if force_num_lines: | |
# Add random junctions (with no connectivity) | |
missing = max_num_lines * 2 - len(junctions[-1]) | |
junctions[-1] = torch.cat( | |
[ | |
junctions[-1], | |
torch.rand(missing, 2).to(lines) | |
* lines.new_tensor([[w - 1, h - 1]]), | |
], | |
dim=0, | |
) | |
junc_scores[-1] = torch.cat( | |
[junc_scores[-1], torch.zeros(missing).to(lines)], dim=0 | |
) | |
junc_connect = torch.eye(max_num_lines * 2, dtype=torch.bool, device=device) | |
pairs = clusters.reshape(-1, 2) # these pairs are connected by a line | |
junc_connect[pairs[:, 0], pairs[:, 1]] = True | |
junc_connect[pairs[:, 1], pairs[:, 0]] = True | |
connectivity.append(junc_connect) | |
else: | |
# Compute the junction connectivity | |
junc_connect = torch.eye(n_clusters, dtype=torch.bool, device=device) | |
pairs = clusters.reshape(-1, 2) # these pairs are connected by a line | |
junc_connect[pairs[:, 0], pairs[:, 1]] = True | |
junc_connect[pairs[:, 1], pairs[:, 0]] = True | |
connectivity.append(junc_connect) | |
junctions = torch.stack(junctions, dim=0) | |
new_lines = torch.stack(new_lines, dim=0) | |
lines_junc_idx = torch.stack(lines_junc_idx, dim=0) | |
# Interpolate the new junction descriptors | |
junc_descs = sample_descriptors_corner_conv(junctions, all_descs, s).mT | |
return ( | |
junctions, | |
junc_scores, | |
junc_descs, | |
connectivity, | |
new_lines, | |
lines_junc_idx, | |
num_true_junctions, | |
) | |
class WireframeExtractor(BaseModel): | |
default_conf = { | |
"point_extractor": { | |
"name": None, | |
"trainable": False, | |
"dense_outputs": True, | |
"max_num_keypoints": None, | |
"force_num_keypoints": False, | |
}, | |
"line_extractor": { | |
"name": None, | |
"trainable": False, | |
"max_num_lines": None, | |
"force_num_lines": False, | |
"min_length": 15, | |
}, | |
"wireframe_params": { | |
"merge_points": True, | |
"merge_line_endpoints": True, | |
"nms_radius": 3, | |
}, | |
} | |
required_data_keys = ["image"] | |
def _init(self, conf): | |
self.point_extractor = get_model(self.conf.point_extractor.name)( | |
self.conf.point_extractor | |
) | |
self.line_extractor = get_model(self.conf.line_extractor.name)( | |
self.conf.line_extractor | |
) | |
def _forward(self, data): | |
b_size, _, h, w = data["image"].shape | |
device = data["image"].device | |
if ( | |
not self.conf.point_extractor.force_num_keypoints | |
or not self.conf.line_extractor.force_num_lines | |
): | |
assert b_size == 1, "Only batch size of 1 accepted for non padded inputs" | |
# Line detection | |
pred = self.line_extractor(data) | |
if pred["line_scores"].shape[-1] != 0: | |
pred["line_scores"] /= pred["line_scores"].max(dim=1)[0][:, None] + 1e-8 | |
# Keypoint prediction | |
pred = {**pred, **self.point_extractor(data)} | |
assert ( | |
"dense_descriptors" in pred | |
), "The KP extractor should return dense descriptors" | |
s_desc = data["image"].shape[2] // pred["dense_descriptors"].shape[2] | |
# Remove keypoints that are too close to line endpoints | |
if self.conf.wireframe_params.merge_points: | |
line_endpts = pred["lines"].reshape(b_size, -1, 2) | |
dist_pt_lines = torch.norm( | |
pred["keypoints"][:, :, None] - line_endpts[:, None], dim=-1 | |
) | |
# For each keypoint, mark it as valid or to remove | |
pts_to_remove = torch.any( | |
dist_pt_lines < self.conf.wireframe_params.nms_radius, dim=2 | |
) | |
if self.conf.point_extractor.force_num_keypoints: | |
# Replace the points with random ones | |
num_to_remove = pts_to_remove.int().sum().item() | |
pred["keypoints"][pts_to_remove] = torch.rand( | |
num_to_remove, 2, device=device | |
) * pred["keypoints"].new_tensor([[w - 1, h - 1]]) | |
pred["keypoint_scores"][pts_to_remove] = 0 | |
for bs in range(b_size): | |
descrs = sample_descriptors_corner_conv( | |
pred["keypoints"][bs][pts_to_remove[bs]][None], | |
pred["dense_descriptors"][bs][None], | |
s_desc, | |
) | |
pred["descriptors"][bs][pts_to_remove[bs]] = descrs[0].T | |
else: | |
# Simply remove them (we assume batch_size = 1 here) | |
assert len(pred["keypoints"]) == 1 | |
pred["keypoints"] = pred["keypoints"][0][~pts_to_remove[0]][None] | |
pred["keypoint_scores"] = pred["keypoint_scores"][0][~pts_to_remove[0]][ | |
None | |
] | |
pred["descriptors"] = pred["descriptors"][0][~pts_to_remove[0]][None] | |
# Connect the lines together to form a wireframe | |
orig_lines = pred["lines"].clone() | |
if ( | |
self.conf.wireframe_params.merge_line_endpoints | |
and len(pred["lines"][0]) > 0 | |
): | |
# Merge first close-by endpoints to connect lines | |
( | |
line_points, | |
line_pts_scores, | |
line_descs, | |
line_association, | |
pred["lines"], | |
lines_junc_idx, | |
n_true_junctions, | |
) = lines_to_wireframe( | |
pred["lines"], | |
pred["line_scores"], | |
pred["dense_descriptors"], | |
s=s_desc, | |
nms_radius=self.conf.wireframe_params.nms_radius, | |
force_num_lines=self.conf.line_extractor.force_num_lines, | |
max_num_lines=self.conf.line_extractor.max_num_lines, | |
) | |
# Add the keypoints to the junctions and fill the rest with random keypoints | |
(all_points, all_scores, all_descs, pl_associativity) = [], [], [], [] | |
for bs in range(b_size): | |
all_points.append( | |
torch.cat([line_points[bs], pred["keypoints"][bs]], dim=0) | |
) | |
all_scores.append( | |
torch.cat([line_pts_scores[bs], pred["keypoint_scores"][bs]], dim=0) | |
) | |
all_descs.append( | |
torch.cat([line_descs[bs], pred["descriptors"][bs]], dim=0) | |
) | |
associativity = torch.eye( | |
len(all_points[-1]), dtype=torch.bool, device=device | |
) | |
associativity[ | |
: n_true_junctions[bs], : n_true_junctions[bs] | |
] = line_association[bs][: n_true_junctions[bs], : n_true_junctions[bs]] | |
pl_associativity.append(associativity) | |
all_points = torch.stack(all_points, dim=0) | |
all_scores = torch.stack(all_scores, dim=0) | |
all_descs = torch.stack(all_descs, dim=0) | |
pl_associativity = torch.stack(pl_associativity, dim=0) | |
else: | |
# Lines are independent | |
all_points = torch.cat( | |
[pred["lines"].reshape(b_size, -1, 2), pred["keypoints"]], dim=1 | |
) | |
n_pts = all_points.shape[1] | |
num_lines = pred["lines"].shape[1] | |
n_true_junctions = [num_lines * 2] * b_size | |
all_scores = torch.cat( | |
[ | |
torch.repeat_interleave(pred["line_scores"], 2, dim=1), | |
pred["keypoint_scores"], | |
], | |
dim=1, | |
) | |
line_descs = sample_descriptors_corner_conv( | |
pred["lines"].reshape(b_size, -1, 2), pred["dense_descriptors"], s_desc | |
).mT # [B, n_lines * 2, desc_dim] | |
all_descs = torch.cat([line_descs, pred["descriptors"]], dim=1) | |
pl_associativity = torch.eye(n_pts, dtype=torch.bool, device=device)[ | |
None | |
].repeat(b_size, 1, 1) | |
lines_junc_idx = ( | |
torch.arange(num_lines * 2, device=device) | |
.reshape(1, -1, 2) | |
.repeat(b_size, 1, 1) | |
) | |
del pred["dense_descriptors"] # Remove dense descriptors to save memory | |
torch.cuda.empty_cache() | |
pred["keypoints"] = all_points | |
pred["keypoint_scores"] = all_scores | |
pred["descriptors"] = all_descs | |
pred["pl_associativity"] = pl_associativity | |
pred["num_junctions"] = torch.tensor(n_true_junctions) | |
pred["orig_lines"] = orig_lines | |
pred["lines_junc_idx"] = lines_junc_idx | |
return pred | |
def loss(self, pred, data): | |
raise NotImplementedError | |
def metrics(self, _pred, _data): | |
return {} | |