Spaces:
Running
Running
import subprocess | |
import sys | |
from pathlib import Path | |
import torch | |
from hloc import logger | |
from ..utils.base_model import BaseModel | |
rord_path = Path(__file__).parent / "../../third_party" | |
sys.path.append(str(rord_path)) | |
from RoRD.lib.model_test import D2Net as _RoRD | |
from RoRD.lib.pyramid import process_multiscale | |
class RoRD(BaseModel): | |
default_conf = { | |
"model_name": "rord.pth", | |
"checkpoint_dir": rord_path / "RoRD" / "models", | |
"use_relu": True, | |
"multiscale": False, | |
"max_keypoints": 1024, | |
} | |
required_inputs = ["image"] | |
weight_urls = { | |
"rord.pth": "https://drive.google.com/uc?id=12414ZGKwgPAjNTGtNrlB4VV9l7W76B2o&confirm=t", | |
} | |
proxy = "http://localhost:1080" | |
def _init(self, conf): | |
model_path = conf["checkpoint_dir"] / conf["model_name"] | |
link = self.weight_urls[conf["model_name"]] | |
if not model_path.exists(): | |
model_path.parent.mkdir(exist_ok=True) | |
cmd_wo_proxy = ["gdown", link, "-O", str(model_path)] | |
cmd = ["gdown", link, "-O", str(model_path), "--proxy", self.proxy] | |
logger.info(f"Downloading the RoRD model with `{cmd_wo_proxy}`.") | |
try: | |
subprocess.run(cmd_wo_proxy, check=True) | |
except subprocess.CalledProcessError as e: | |
logger.info(f"Downloading failed {e}.") | |
logger.info(f"Downloading the RoRD model with {cmd}.") | |
try: | |
subprocess.run(cmd, check=True) | |
except subprocess.CalledProcessError as e: | |
logger.error(f"Failed to download the RoRD model: {e}") | |
self.net = _RoRD( | |
model_file=model_path, use_relu=conf["use_relu"], use_cuda=False | |
) | |
logger.info("Load RoRD model done.") | |
def _forward(self, data): | |
image = data["image"] | |
image = image.flip(1) # RGB -> BGR | |
norm = image.new_tensor([103.939, 116.779, 123.68]) | |
image = image * 255 - norm.view(1, 3, 1, 1) # caffe normalization | |
if self.conf["multiscale"]: | |
keypoints, scores, descriptors = process_multiscale(image, self.net) | |
else: | |
keypoints, scores, descriptors = process_multiscale( | |
image, self.net, scales=[1] | |
) | |
keypoints = keypoints[:, [1, 0]] # (x, y) and remove the scale | |
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :] | |
keypoints = keypoints[idxs, :2] | |
descriptors = descriptors[idxs] | |
scores = scores[idxs] | |
return { | |
"keypoints": torch.from_numpy(keypoints)[None], | |
"scores": torch.from_numpy(scores)[None], | |
"descriptors": torch.from_numpy(descriptors.T)[None], | |
} | |