Spaces:
Running
Running
# Copyright 2019-present NAVER Corp. | |
# CC BY-NC-SA 3.0 | |
# Available only for non-commercial use | |
import os, pdb | |
from PIL import Image | |
import numpy as np | |
import torch | |
from .tools import common | |
from .tools.dataloader import norm_RGB | |
from .nets.patchnet import * | |
def load_network(model_fn): | |
checkpoint = torch.load(model_fn) | |
print("\n>> Creating net = " + checkpoint["net"]) | |
net = eval(checkpoint["net"]) | |
nb_of_weights = common.model_size(net) | |
print(f" ( Model size: {nb_of_weights/1000:.0f}K parameters )") | |
# initialization | |
weights = checkpoint["state_dict"] | |
net.load_state_dict({k.replace("module.", ""): v for k, v in weights.items()}) | |
return net.eval() | |
class NonMaxSuppression(torch.nn.Module): | |
def __init__(self, rel_thr=0.7, rep_thr=0.7): | |
nn.Module.__init__(self) | |
self.max_filter = torch.nn.MaxPool2d(kernel_size=3, stride=1, padding=1) | |
self.rel_thr = rel_thr | |
self.rep_thr = rep_thr | |
def forward(self, reliability, repeatability, **kw): | |
assert len(reliability) == len(repeatability) == 1 | |
reliability, repeatability = reliability[0], repeatability[0] | |
# local maxima | |
maxima = repeatability == self.max_filter(repeatability) | |
# remove low peaks | |
maxima *= repeatability >= self.rep_thr | |
maxima *= reliability >= self.rel_thr | |
return maxima.nonzero().t()[2:4] | |
def extract_multiscale( | |
net, | |
img, | |
detector, | |
scale_f=2**0.25, | |
min_scale=0.0, | |
max_scale=1, | |
min_size=256, | |
max_size=1024, | |
verbose=False, | |
): | |
old_bm = torch.backends.cudnn.benchmark | |
torch.backends.cudnn.benchmark = False # speedup | |
# extract keypoints at multiple scales | |
B, three, H, W = img.shape | |
assert B == 1 and three == 3, "should be a batch with a single RGB image" | |
assert max_scale <= 1 | |
s = 1.0 # current scale factor | |
X, Y, S, C, Q, D = [], [], [], [], [], [] | |
while s + 0.001 >= max(min_scale, min_size / max(H, W)): | |
if s - 0.001 <= min(max_scale, max_size / max(H, W)): | |
nh, nw = img.shape[2:] | |
if verbose: | |
print(f"extracting at scale x{s:.02f} = {nw:4d}x{nh:3d}") | |
# extract descriptors | |
with torch.no_grad(): | |
res = net(imgs=[img]) | |
# get output and reliability map | |
descriptors = res["descriptors"][0] | |
reliability = res["reliability"][0] | |
repeatability = res["repeatability"][0] | |
# normalize the reliability for nms | |
# extract maxima and descs | |
y, x = detector(**res) # nms | |
c = reliability[0, 0, y, x] | |
q = repeatability[0, 0, y, x] | |
d = descriptors[0, :, y, x].t() | |
n = d.shape[0] | |
# accumulate multiple scales | |
X.append(x.float() * W / nw) | |
Y.append(y.float() * H / nh) | |
S.append((32 / s) * torch.ones(n, dtype=torch.float32, device=d.device)) | |
C.append(c) | |
Q.append(q) | |
D.append(d) | |
s /= scale_f | |
# down-scale the image for next iteration | |
nh, nw = round(H * s), round(W * s) | |
img = F.interpolate(img, (nh, nw), mode="bilinear", align_corners=False) | |
# restore value | |
torch.backends.cudnn.benchmark = old_bm | |
Y = torch.cat(Y) | |
X = torch.cat(X) | |
S = torch.cat(S) # scale | |
scores = torch.cat(C) * torch.cat(Q) # scores = reliability * repeatability | |
XYS = torch.stack([X, Y, S], dim=-1) | |
D = torch.cat(D) | |
return XYS, D, scores | |
def extract_keypoints(args): | |
iscuda = common.torch_set_gpu(args.gpu) | |
# load the network... | |
net = load_network(args.model) | |
if iscuda: | |
net = net.cuda() | |
# create the non-maxima detector | |
detector = NonMaxSuppression( | |
rel_thr=args.reliability_thr, rep_thr=args.repeatability_thr | |
) | |
while args.images: | |
img_path = args.images.pop(0) | |
if img_path.endswith(".txt"): | |
args.images = open(img_path).read().splitlines() + args.images | |
continue | |
print(f"\nExtracting features for {img_path}") | |
img = Image.open(img_path).convert("RGB") | |
W, H = img.size | |
img = norm_RGB(img)[None] | |
if iscuda: | |
img = img.cuda() | |
# extract keypoints/descriptors for a single image | |
xys, desc, scores = extract_multiscale( | |
net, | |
img, | |
detector, | |
scale_f=args.scale_f, | |
min_scale=args.min_scale, | |
max_scale=args.max_scale, | |
min_size=args.min_size, | |
max_size=args.max_size, | |
verbose=True, | |
) | |
xys = xys.cpu().numpy() | |
desc = desc.cpu().numpy() | |
scores = scores.cpu().numpy() | |
idxs = scores.argsort()[-args.top_k or None :] | |
outpath = img_path + "." + args.tag | |
print(f"Saving {len(idxs)} keypoints to {outpath}") | |
np.savez( | |
open(outpath, "wb"), | |
imsize=(W, H), | |
keypoints=xys[idxs], | |
descriptors=desc[idxs], | |
scores=scores[idxs], | |
) | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser("Extract keypoints for a given image") | |
parser.add_argument("--model", type=str, required=True, help="model path") | |
parser.add_argument( | |
"--images", type=str, required=True, nargs="+", help="images / list" | |
) | |
parser.add_argument("--tag", type=str, default="r2d2", help="output file tag") | |
parser.add_argument("--top-k", type=int, default=5000, help="number of keypoints") | |
parser.add_argument("--scale-f", type=float, default=2**0.25) | |
parser.add_argument("--min-size", type=int, default=256) | |
parser.add_argument("--max-size", type=int, default=1024) | |
parser.add_argument("--min-scale", type=float, default=0) | |
parser.add_argument("--max-scale", type=float, default=1) | |
parser.add_argument("--reliability-thr", type=float, default=0.7) | |
parser.add_argument("--repeatability-thr", type=float, default=0.7) | |
parser.add_argument( | |
"--gpu", type=int, nargs="+", default=[0], help="use -1 for CPU" | |
) | |
args = parser.parse_args() | |
extract_keypoints(args) | |