Spaces:
Running
Running
import numpy as np | |
import torch | |
### Point-related utils | |
# Warp a list of points using a homography | |
def warp_points(points, homography): | |
# Convert to homogeneous and in xy format | |
new_points = np.concatenate( | |
[points[..., [1, 0]], np.ones_like(points[..., :1])], axis=-1 | |
) | |
# Warp | |
new_points = (homography @ new_points.T).T | |
# Convert back to inhomogeneous and hw format | |
new_points = new_points[..., [1, 0]] / new_points[..., 2:] | |
return new_points | |
# Mask out the points that are outside of img_size | |
def mask_points(points, img_size): | |
mask = ( | |
(points[..., 0] >= 0) | |
& (points[..., 0] < img_size[0]) | |
& (points[..., 1] >= 0) | |
& (points[..., 1] < img_size[1]) | |
) | |
return mask | |
# Convert a tensor [N, 2] or batched tensor [B, N, 2] of N keypoints into | |
# a grid in [-1, 1]² that can be used in torch.nn.functional.interpolate | |
def keypoints_to_grid(keypoints, img_size): | |
n_points = keypoints.size()[-2] | |
device = keypoints.device | |
grid_points = ( | |
keypoints.float() | |
* 2.0 | |
/ torch.tensor(img_size, dtype=torch.float, device=device) | |
- 1.0 | |
) | |
grid_points = grid_points[..., [1, 0]].view(-1, n_points, 1, 2) | |
return grid_points | |
# Return a 2D matrix indicating the local neighborhood of each point | |
# for a given threshold and two lists of corresponding keypoints | |
def get_dist_mask(kp0, kp1, valid_mask, dist_thresh): | |
b_size, n_points, _ = kp0.size() | |
dist_mask0 = torch.norm(kp0.unsqueeze(2) - kp0.unsqueeze(1), dim=-1) | |
dist_mask1 = torch.norm(kp1.unsqueeze(2) - kp1.unsqueeze(1), dim=-1) | |
dist_mask = torch.min(dist_mask0, dist_mask1) | |
dist_mask = dist_mask <= dist_thresh | |
dist_mask = dist_mask.repeat(1, 1, b_size).reshape( | |
b_size * n_points, b_size * n_points | |
) | |
dist_mask = dist_mask[valid_mask, :][:, valid_mask] | |
return dist_mask | |
### Line-related utils | |
# Sample n points along lines of shape (num_lines, 2, 2) | |
def sample_line_points(lines, n): | |
line_points_x = np.linspace(lines[:, 0, 0], lines[:, 1, 0], n, axis=-1) | |
line_points_y = np.linspace(lines[:, 0, 1], lines[:, 1, 1], n, axis=-1) | |
line_points = np.stack([line_points_x, line_points_y], axis=2) | |
return line_points | |
# Return a mask of the valid lines that are within a valid mask of an image | |
def mask_lines(lines, valid_mask): | |
h, w = valid_mask.shape | |
int_lines = np.clip(np.round(lines).astype(int), 0, [h - 1, w - 1]) | |
h_valid = valid_mask[int_lines[:, 0, 0], int_lines[:, 0, 1]] | |
w_valid = valid_mask[int_lines[:, 1, 0], int_lines[:, 1, 1]] | |
valid = h_valid & w_valid | |
return valid | |
# Return a 2D matrix indicating for each pair of points | |
# if they are on the same line or not | |
def get_common_line_mask(line_indices, valid_mask): | |
b_size, n_points = line_indices.shape | |
common_mask = line_indices[:, :, None] == line_indices[:, None, :] | |
common_mask = common_mask.repeat(1, 1, b_size).reshape( | |
b_size * n_points, b_size * n_points | |
) | |
common_mask = common_mask[valid_mask, :][:, valid_mask] | |
return common_mask | |