Spaces:
Running
Running
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# main pnp code | |
# -------------------------------------------------------- | |
import numpy as np | |
import quaternion | |
import cv2 | |
from packaging import version | |
from dust3r.utils.geometry import opencv_to_colmap_intrinsics | |
try: | |
import poselib # noqa | |
HAS_POSELIB = True | |
except Exception as e: | |
HAS_POSELIB = False | |
try: | |
import pycolmap # noqa | |
version_number = pycolmap.__version__ | |
if version.parse(version_number) < version.parse("0.5.0"): | |
HAS_PYCOLMAP = False | |
else: | |
HAS_PYCOLMAP = True | |
except Exception as e: | |
HAS_PYCOLMAP = False | |
def run_pnp(pts2D, pts3D, K, distortion = None, mode='cv2', reprojectionError=5, img_size = None): | |
""" | |
use OPENCV model for distortion (4 values) | |
""" | |
assert mode in ['cv2', 'poselib', 'pycolmap'] | |
try: | |
if len(pts2D) > 4 and mode == "cv2": | |
confidence = 0.9999 | |
iterationsCount = 10_000 | |
if distortion is not None: | |
cv2_pts2ds = np.copy(pts2D) | |
cv2_pts2ds = cv2.undistortPoints(cv2_pts2ds, K, np.array(distortion), R=None, P=K) | |
pts2D = cv2_pts2ds.reshape((-1, 2)) | |
success, r_pose, t_pose, _ = cv2.solvePnPRansac(pts3D, pts2D, K, None, flags=cv2.SOLVEPNP_SQPNP, | |
iterationsCount=iterationsCount, | |
reprojectionError=reprojectionError, | |
confidence=confidence) | |
if not success: | |
return False, None | |
r_pose = cv2.Rodrigues(r_pose)[0] # world2cam == world2cam2 | |
RT = np.r_[np.c_[r_pose, t_pose], [(0,0,0,1)]] # world2cam2 | |
return True, np.linalg.inv(RT) # cam2toworld | |
elif len(pts2D) > 4 and mode == "poselib": | |
assert HAS_POSELIB | |
confidence = 0.9999 | |
iterationsCount = 10_000 | |
# NOTE: `Camera` struct currently contains `width`/`height` fields, | |
# however these are not used anywhere in the code-base and are provided simply to be consistent with COLMAP. | |
# so we put garbage in there | |
colmap_intrinsics = opencv_to_colmap_intrinsics(K) | |
fx = colmap_intrinsics[0, 0] | |
fy = colmap_intrinsics[1, 1] | |
cx = colmap_intrinsics[0, 2] | |
cy = colmap_intrinsics[1, 2] | |
width = img_size[0] if img_size is not None else int(cx*2) | |
height = img_size[1] if img_size is not None else int(cy*2) | |
if distortion is None: | |
camera = {'model': 'PINHOLE', 'width': width, 'height': height, 'params': [fx, fy, cx, cy]} | |
else: | |
camera = {'model': 'OPENCV', 'width': width, 'height': height, | |
'params': [fx, fy, cx, cy] + distortion} | |
pts2D = np.copy(pts2D) | |
pts2D[:, 0] += 0.5 | |
pts2D[:, 1] += 0.5 | |
pose, _ = poselib.estimate_absolute_pose(pts2D, pts3D, camera, | |
{'max_reproj_error': reprojectionError, | |
'max_iterations': iterationsCount, | |
'success_prob': confidence}, {}) | |
if pose is None: | |
return False, None | |
RT = pose.Rt # (3x4) | |
RT = np.r_[RT, [(0,0,0,1)]] # world2cam | |
return True, np.linalg.inv(RT) # cam2toworld | |
elif len(pts2D) > 4 and mode == "pycolmap": | |
assert HAS_PYCOLMAP | |
assert img_size is not None | |
pts2D = np.copy(pts2D) | |
pts2D[:, 0] += 0.5 | |
pts2D[:, 1] += 0.5 | |
colmap_intrinsics = opencv_to_colmap_intrinsics(K) | |
fx = colmap_intrinsics[0, 0] | |
fy = colmap_intrinsics[1, 1] | |
cx = colmap_intrinsics[0, 2] | |
cy = colmap_intrinsics[1, 2] | |
width = img_size[0] | |
height = img_size[1] | |
if distortion is None: | |
camera_dict = {'model': 'PINHOLE', 'width': width, 'height': height, 'params': [fx, fy, cx, cy]} | |
else: | |
camera_dict = {'model': 'OPENCV', 'width': width, 'height': height, | |
'params': [fx, fy, cx, cy] + distortion} | |
pycolmap_camera = pycolmap.Camera( | |
model=camera_dict['model'], width=camera_dict['width'], height=camera_dict['height'], | |
params=camera_dict['params']) | |
pycolmap_estimation_options = dict(ransac=dict(max_error=reprojectionError, min_inlier_ratio=0.01, | |
min_num_trials=1000, max_num_trials=100000, | |
confidence=0.9999)) | |
pycolmap_refinement_options=dict(refine_focal_length=False, refine_extra_params=False) | |
ret = pycolmap.absolute_pose_estimation(pts2D, pts3D, pycolmap_camera, | |
estimation_options=pycolmap_estimation_options, | |
refinement_options=pycolmap_refinement_options) | |
if ret is None: | |
ret = {'success': False} | |
else: | |
ret['success'] = True | |
if callable(ret['cam_from_world'].matrix): | |
retmat = ret['cam_from_world'].matrix() | |
else: | |
retmat = ret['cam_from_world'].matrix | |
ret['qvec'] = quaternion.from_rotation_matrix(retmat[:3, :3]) | |
ret['tvec'] = retmat[:3, 3] | |
if not (ret['success'] and ret['num_inliers'] > 0): | |
success = False | |
pose = None | |
else: | |
success = True | |
pr_world_to_querycam = np.r_[ret['cam_from_world'].matrix(), [(0,0,0,1)]] | |
pose = np.linalg.inv(pr_world_to_querycam) | |
return success, pose | |
else: | |
return False, None | |
except Exception as e: | |
print(f'error during pnp: {e}') | |
return False, None |