Spaces:
Running
Running
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# evaluation utilities | |
# -------------------------------------------------------- | |
import numpy as np | |
import quaternion | |
import torch | |
import roma | |
import collections | |
import os | |
def aggregate_stats(info_str, pose_errors, angular_errors): | |
stats = collections.Counter() | |
median_pos_error = np.median(pose_errors) | |
median_angular_error = np.median(angular_errors) | |
out_str = f'{info_str}: {len(pose_errors)} images - {median_pos_error=}, {median_angular_error=}' | |
for trl_thr, ang_thr in [(0.1, 1), (0.25, 2), (0.5, 5), (5, 10)]: | |
for pose_error, angular_error in zip(pose_errors, angular_errors): | |
correct_for_this_threshold = (pose_error < trl_thr) and (angular_error < ang_thr) | |
stats[trl_thr, ang_thr] += correct_for_this_threshold | |
stats = {f'acc@{key[0]:g}m,{key[1]}deg': 100 * val / len(pose_errors) for key, val in stats.items()} | |
for metric, perf in stats.items(): | |
out_str += f' - {metric:12s}={float(perf):.3f}' | |
return out_str | |
def get_pose_error(pr_camtoworld, gt_cam_to_world): | |
abs_transl_error = torch.linalg.norm(torch.tensor(pr_camtoworld[:3, 3]) - torch.tensor(gt_cam_to_world[:3, 3])) | |
abs_angular_error = roma.rotmat_geodesic_distance(torch.tensor(pr_camtoworld[:3, :3]), | |
torch.tensor(gt_cam_to_world[:3, :3])) * 180 / np.pi | |
return abs_transl_error, abs_angular_error | |
def export_results(output_dir, xp_label, query_names, poses_pred): | |
if output_dir is not None: | |
os.makedirs(output_dir, exist_ok=True) | |
lines = "" | |
lines_ltvl = "" | |
for query_name, pr_querycam_to_world in zip(query_names, poses_pred): | |
if pr_querycam_to_world is None: | |
pr_world_to_querycam = np.eye(4) | |
else: | |
pr_world_to_querycam = np.linalg.inv(pr_querycam_to_world) | |
query_shortname = os.path.basename(query_name) | |
pr_world_to_querycam_q = quaternion.from_rotation_matrix(pr_world_to_querycam[:3, :3]) | |
pr_world_to_querycam_t = pr_world_to_querycam[:3, 3] | |
line_pose = quaternion.as_float_array(pr_world_to_querycam_q).tolist() + \ | |
pr_world_to_querycam_t.flatten().tolist() | |
line_content = [query_name] + line_pose | |
lines += ' '.join(str(v) for v in line_content) + '\n' | |
line_content_ltvl = [query_shortname] + line_pose | |
lines_ltvl += ' '.join(str(v) for v in line_content_ltvl) + '\n' | |
with open(os.path.join(output_dir, xp_label + '_results.txt'), 'wt') as f: | |
f.write(lines) | |
with open(os.path.join(output_dir, xp_label + '_ltvl.txt'), 'wt') as f: | |
f.write(lines_ltvl) | |