Realcat
add: mast3r
f90241e
raw
history blame
6.72 kB
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Preprocessing code for the MegaDepth dataset
# dataset at https://www.cs.cornell.edu/projects/megadepth/
# --------------------------------------------------------
import os
import os.path as osp
import collections
from tqdm import tqdm
import numpy as np
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2
import h5py
import path_to_root # noqa
from dust3r.utils.parallel import parallel_threads
from dust3r.datasets.utils import cropping # noqa
def get_parser():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--megadepth_dir', required=True)
parser.add_argument('--precomputed_pairs', required=True)
parser.add_argument('--output_dir', default='data/megadepth_processed')
return parser
def main(db_root, pairs_path, output_dir):
os.makedirs(output_dir, exist_ok=True)
# load all pairs
data = np.load(pairs_path, allow_pickle=True)
scenes = data['scenes']
images = data['images']
pairs = data['pairs']
# enumerate all unique images
todo = collections.defaultdict(set)
for scene, im1, im2, score in pairs:
todo[scene].add(im1)
todo[scene].add(im2)
# for each scene, load intrinsics and then parallel crops
for scene, im_idxs in tqdm(todo.items(), desc='Overall'):
scene, subscene = scenes[scene].split()
out_dir = osp.join(output_dir, scene, subscene)
os.makedirs(out_dir, exist_ok=True)
# load all camera params
_, pose_w2cam, intrinsics = _load_kpts_and_poses(db_root, scene, subscene, intrinsics=True)
in_dir = osp.join(db_root, scene, 'dense' + subscene)
args = [(in_dir, img, intrinsics[img], pose_w2cam[img], out_dir)
for img in [images[im_id] for im_id in im_idxs]]
parallel_threads(resize_one_image, args, star_args=True, front_num=0, leave=False, desc=f'{scene}/{subscene}')
# save pairs
print('Done! prepared all pairs in', output_dir)
def resize_one_image(root, tag, K_pre_rectif, pose_w2cam, out_dir):
if osp.isfile(osp.join(out_dir, tag + '.npz')):
return
# load image
img = cv2.cvtColor(cv2.imread(osp.join(root, 'imgs', tag), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
H, W = img.shape[:2]
# load depth
with h5py.File(osp.join(root, 'depths', osp.splitext(tag)[0] + '.h5'), 'r') as hd5:
depthmap = np.asarray(hd5['depth'])
# rectify = undistort the intrinsics
imsize_pre, K_pre, distortion = K_pre_rectif
imsize_post = img.shape[1::-1]
K_post = cv2.getOptimalNewCameraMatrix(K_pre, distortion, imsize_pre, alpha=0,
newImgSize=imsize_post, centerPrincipalPoint=True)[0]
# downscale
img_out, depthmap_out, intrinsics_out, R_in2out = _downscale_image(K_post, img, depthmap, resolution_out=(800, 600))
# write everything
img_out.save(osp.join(out_dir, tag + '.jpg'), quality=90)
cv2.imwrite(osp.join(out_dir, tag + '.exr'), depthmap_out)
camout2world = np.linalg.inv(pose_w2cam)
camout2world[:3, :3] = camout2world[:3, :3] @ R_in2out.T
np.savez(osp.join(out_dir, tag + '.npz'), intrinsics=intrinsics_out, cam2world=camout2world)
def _downscale_image(camera_intrinsics, image, depthmap, resolution_out=(512, 384)):
H, W = image.shape[:2]
resolution_out = sorted(resolution_out)[::+1 if W < H else -1]
image, depthmap, intrinsics_out = cropping.rescale_image_depthmap(
image, depthmap, camera_intrinsics, resolution_out, force=False)
R_in2out = np.eye(3)
return image, depthmap, intrinsics_out, R_in2out
def _load_kpts_and_poses(root, scene_id, subscene, z_only=False, intrinsics=False):
if intrinsics:
with open(os.path.join(root, scene_id, 'sparse', 'manhattan', subscene, 'cameras.txt'), 'r') as f:
raw = f.readlines()[3:] # skip the header
camera_intrinsics = {}
for camera in raw:
camera = camera.split(' ')
width, height, focal, cx, cy, k0 = [float(elem) for elem in camera[2:]]
K = np.eye(3)
K[0, 0] = focal
K[1, 1] = focal
K[0, 2] = cx
K[1, 2] = cy
camera_intrinsics[int(camera[0])] = ((int(width), int(height)), K, (k0, 0, 0, 0))
with open(os.path.join(root, scene_id, 'sparse', 'manhattan', subscene, 'images.txt'), 'r') as f:
raw = f.read().splitlines()[4:] # skip the header
extract_pose = colmap_raw_pose_to_principal_axis if z_only else colmap_raw_pose_to_RT
poses = {}
points3D_idxs = {}
camera = []
for image, points in zip(raw[:: 2], raw[1:: 2]):
image = image.split(' ')
points = points.split(' ')
image_id = image[-1]
camera.append(int(image[-2]))
# find the principal axis
raw_pose = [float(elem) for elem in image[1: -2]]
poses[image_id] = extract_pose(raw_pose)
current_points3D_idxs = {int(i) for i in points[2:: 3] if i != '-1'}
assert -1 not in current_points3D_idxs, bb()
points3D_idxs[image_id] = current_points3D_idxs
if intrinsics:
image_intrinsics = {im_id: camera_intrinsics[cam] for im_id, cam in zip(poses, camera)}
return points3D_idxs, poses, image_intrinsics
else:
return points3D_idxs, poses
def colmap_raw_pose_to_principal_axis(image_pose):
qvec = image_pose[: 4]
qvec = qvec / np.linalg.norm(qvec)
w, x, y, z = qvec
z_axis = np.float32([
2 * x * z - 2 * y * w,
2 * y * z + 2 * x * w,
1 - 2 * x * x - 2 * y * y
])
return z_axis
def colmap_raw_pose_to_RT(image_pose):
qvec = image_pose[: 4]
qvec = qvec / np.linalg.norm(qvec)
w, x, y, z = qvec
R = np.array([
[
1 - 2 * y * y - 2 * z * z,
2 * x * y - 2 * z * w,
2 * x * z + 2 * y * w
],
[
2 * x * y + 2 * z * w,
1 - 2 * x * x - 2 * z * z,
2 * y * z - 2 * x * w
],
[
2 * x * z - 2 * y * w,
2 * y * z + 2 * x * w,
1 - 2 * x * x - 2 * y * y
]
])
# principal_axis.append(R[2, :])
t = image_pose[4: 7]
# World-to-Camera pose
current_pose = np.eye(4)
current_pose[: 3, : 3] = R
current_pose[: 3, 3] = t
return current_pose
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
main(args.megadepth_dir, args.precomputed_pairs, args.output_dir)