Realcat
update: gradio version to 3.41.2
1e360c3
raw
history blame
18.3 kB
import os
import random
import numpy as np
import torch
import cv2
import gradio as gr
from pathlib import Path
from itertools import combinations
from hloc import matchers, extractors, logger
from hloc.utils.base_model import dynamic_load
from hloc import match_dense, match_features, extract_features
from hloc.utils.viz import add_text, plot_keypoints
from .viz import draw_matches, fig2im, plot_images, plot_color_line_matches
device = "cuda" if torch.cuda.is_available() else "cpu"
DEFAULT_SETTING_THRESHOLD = 0.1
DEFAULT_SETTING_MAX_FEATURES = 2000
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
DEFAULT_ENABLE_RANSAC = True
DEFAULT_RANSAC_METHOD = "USAC_MAGSAC"
DEFAULT_RANSAC_REPROJ_THRESHOLD = 8
DEFAULT_RANSAC_CONFIDENCE = 0.999
DEFAULT_RANSAC_MAX_ITER = 10000
DEFAULT_MIN_NUM_MATCHES = 4
DEFAULT_MATCHING_THRESHOLD = 0.2
DEFAULT_SETTING_GEOMETRY = "Homography"
GRADIO_VERSION = gr.__version__.split('.')[0]
def get_model(match_conf):
Model = dynamic_load(matchers, match_conf["model"]["name"])
model = Model(match_conf["model"]).eval().to(device)
return model
def get_feature_model(conf):
Model = dynamic_load(extractors, conf["model"]["name"])
model = Model(conf["model"]).eval().to(device)
return model
def gen_examples():
random.seed(1)
example_matchers = [
"disk+lightglue",
"loftr",
"disk",
"d2net",
"topicfm",
"superpoint+superglue",
"disk+dualsoftmax",
"roma",
]
def gen_images_pairs(path: str, count: int = 5):
imgs_list = [
os.path.join(path, file)
for file in os.listdir(path)
if file.lower().endswith((".jpg", ".jpeg", ".png"))
]
pairs = list(combinations(imgs_list, 2))
selected = random.sample(range(len(pairs)), count)
return [pairs[i] for i in selected]
# image pair path
path = Path(__file__).parent.parent / "datasets/sacre_coeur/mapping"
pairs = gen_images_pairs(str(path), len(example_matchers))
match_setting_threshold = DEFAULT_SETTING_THRESHOLD
match_setting_max_features = DEFAULT_SETTING_MAX_FEATURES
detect_keypoints_threshold = DEFAULT_DEFAULT_KEYPOINT_THRESHOLD
ransac_method = DEFAULT_RANSAC_METHOD
ransac_reproj_threshold = DEFAULT_RANSAC_REPROJ_THRESHOLD
ransac_confidence = DEFAULT_RANSAC_CONFIDENCE
ransac_max_iter = DEFAULT_RANSAC_MAX_ITER
input_lists = []
for pair, mt in zip(pairs, example_matchers):
input_lists.append(
[
pair[0],
pair[1],
match_setting_threshold,
match_setting_max_features,
detect_keypoints_threshold,
mt,
# enable_ransac,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
]
)
return input_lists
def filter_matches(
pred,
ransac_method=DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
):
mkpts0 = None
mkpts1 = None
feature_type = None
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
mkpts0 = pred["keypoints0_orig"]
mkpts1 = pred["keypoints1_orig"]
feature_type = "KEYPOINT"
elif (
"line_keypoints0_orig" in pred.keys()
and "line_keypoints1_orig" in pred.keys()
):
mkpts0 = pred["line_keypoints0_orig"]
mkpts1 = pred["line_keypoints1_orig"]
feature_type = "LINE"
else:
return pred
if mkpts0 is None or mkpts0 is None:
return pred
if ransac_method not in ransac_zoo.keys():
ransac_method = DEFAULT_RANSAC_METHOD
if len(mkpts0) < DEFAULT_MIN_NUM_MATCHES:
return pred
H, mask = cv2.findHomography(
mkpts0,
mkpts1,
method=ransac_zoo[ransac_method],
ransacReprojThreshold=ransac_reproj_threshold,
confidence=ransac_confidence,
maxIters=ransac_max_iter,
)
mask = np.array(mask.ravel().astype("bool"), dtype="bool")
if H is not None:
if feature_type == "KEYPOINT":
pred["keypoints0_orig"] = mkpts0[mask]
pred["keypoints1_orig"] = mkpts1[mask]
pred["mconf"] = pred["mconf"][mask]
elif feature_type == "LINE":
pred["line_keypoints0_orig"] = mkpts0[mask]
pred["line_keypoints1_orig"] = mkpts1[mask]
return pred
def compute_geom(
pred,
ransac_method=DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
) -> dict:
mkpts0 = None
mkpts1 = None
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
mkpts0 = pred["keypoints0_orig"]
mkpts1 = pred["keypoints1_orig"]
if (
"line_keypoints0_orig" in pred.keys()
and "line_keypoints1_orig" in pred.keys()
):
mkpts0 = pred["line_keypoints0_orig"]
mkpts1 = pred["line_keypoints1_orig"]
if mkpts0 is not None and mkpts1 is not None:
if len(mkpts0) < 2 * DEFAULT_MIN_NUM_MATCHES:
return {}
h1, w1, _ = pred["image0_orig"].shape
geo_info = {}
F, inliers = cv2.findFundamentalMat(
mkpts0,
mkpts1,
method=ransac_zoo[ransac_method],
ransacReprojThreshold=ransac_reproj_threshold,
confidence=ransac_confidence,
maxIters=ransac_max_iter,
)
if F is not None:
geo_info["Fundamental"] = F.tolist()
H, _ = cv2.findHomography(
mkpts1,
mkpts0,
method=ransac_zoo[ransac_method],
ransacReprojThreshold=ransac_reproj_threshold,
confidence=ransac_confidence,
maxIters=ransac_max_iter,
)
if H is not None:
geo_info["Homography"] = H.tolist()
try:
_, H1, H2 = cv2.stereoRectifyUncalibrated(
mkpts0.reshape(-1, 2),
mkpts1.reshape(-1, 2),
F,
imgSize=(w1, h1),
)
geo_info["H1"] = H1.tolist()
geo_info["H2"] = H2.tolist()
except cv2.error as e:
logger.error(f"e, skip")
return geo_info
else:
return {}
def wrap_images(img0, img1, geo_info, geom_type):
h1, w1, _ = img0.shape
h2, w2, _ = img1.shape
result_matrix = None
if geo_info is not None and len(geo_info) != 0:
rectified_image0 = img0
rectified_image1 = None
H = np.array(geo_info["Homography"])
F = np.array(geo_info["Fundamental"])
title = []
if geom_type == "Homography":
rectified_image1 = cv2.warpPerspective(
img1, H, (img0.shape[1], img0.shape[0])
)
result_matrix = H
title = ["Image 0", "Image 1 - warped"]
elif geom_type == "Fundamental":
H1, H2 = np.array(geo_info["H1"]), np.array(geo_info["H2"])
rectified_image0 = cv2.warpPerspective(img0, H1, (w1, h1))
rectified_image1 = cv2.warpPerspective(img1, H2, (w2, h2))
result_matrix = F
title = ["Image 0 - warped", "Image 1 - warped"]
else:
print("Error: Unknown geometry type")
fig = plot_images(
[rectified_image0.squeeze(), rectified_image1.squeeze()],
title,
dpi=300,
)
dictionary = {
"row1": result_matrix[0].tolist(),
"row2": result_matrix[1].tolist(),
"row3": result_matrix[2].tolist(),
}
return fig2im(fig), dictionary
else:
return None, None
def change_estimate_geom(input_image0, input_image1, matches_info, choice):
if (
matches_info is None
or len(matches_info) < 1
or "geom_info" not in matches_info.keys()
):
return None, None
geom_info = matches_info["geom_info"]
wrapped_images = None
if choice != "No":
wrapped_images, _ = wrap_images(
input_image0, input_image1, geom_info, choice
)
return wrapped_images, matches_info
else:
return None, None
def display_matches(pred: dict, titles=[], dpi=300):
img0 = pred["image0_orig"]
img1 = pred["image1_orig"]
num_inliers = 0
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
mkpts0 = pred["keypoints0_orig"]
mkpts1 = pred["keypoints1_orig"]
num_inliers = len(mkpts0)
if "mconf" in pred.keys():
mconf = pred["mconf"]
else:
mconf = np.ones(len(mkpts0))
fig_mkpts = draw_matches(
mkpts0,
mkpts1,
img0,
img1,
mconf,
dpi=dpi,
titles=titles,
)
fig = fig_mkpts
if "line0_orig" in pred.keys() and "line1_orig" in pred.keys():
# lines
mtlines0 = pred["line0_orig"]
mtlines1 = pred["line1_orig"]
num_inliers = len(mtlines0)
fig_lines = plot_images(
[img0.squeeze(), img1.squeeze()],
["Image 0 - matched lines", "Image 1 - matched lines"],
dpi=300,
)
fig_lines = plot_color_line_matches([mtlines0, mtlines1], lw=2)
fig_lines = fig2im(fig_lines)
# keypoints
mkpts0 = pred["line_keypoints0_orig"]
mkpts1 = pred["line_keypoints1_orig"]
if mkpts0 is not None and mkpts1 is not None:
num_inliers = len(mkpts0)
if "mconf" in pred.keys():
mconf = pred["mconf"]
else:
mconf = np.ones(len(mkpts0))
fig_mkpts = draw_matches(mkpts0, mkpts1, img0, img1, mconf, dpi=300)
fig_lines = cv2.resize(
fig_lines, (fig_mkpts.shape[1], fig_mkpts.shape[0])
)
fig = np.concatenate([fig_mkpts, fig_lines], axis=0)
else:
fig = fig_lines
return fig, num_inliers
def run_matching(
image0,
image1,
match_threshold,
extract_max_keypoints,
keypoint_threshold,
key,
ransac_method=DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
choice_estimate_geom=DEFAULT_SETTING_GEOMETRY,
):
# image0 and image1 is RGB mode
if image0 is None or image1 is None:
raise gr.Error("Error: No images found! Please upload two images.")
# init output
output_keypoints = None
output_matches_raw = None
output_matches_ransac = None
model = matcher_zoo[key]
match_conf = model["config"]
# update match config
match_conf["model"]["match_threshold"] = match_threshold
match_conf["model"]["max_keypoints"] = extract_max_keypoints
matcher = get_model(match_conf)
if model["dense"]:
pred = match_dense.match_images(
matcher, image0, image1, match_conf["preprocessing"], device=device
)
del matcher
extract_conf = None
else:
extract_conf = model["config_feature"]
# update extract config
extract_conf["model"]["max_keypoints"] = extract_max_keypoints
extract_conf["model"]["keypoint_threshold"] = keypoint_threshold
extractor = get_feature_model(extract_conf)
pred0 = extract_features.extract(
extractor, image0, extract_conf["preprocessing"]
)
pred1 = extract_features.extract(
extractor, image1, extract_conf["preprocessing"]
)
pred = match_features.match_images(matcher, pred0, pred1)
del extractor
# plot images with keypoints
titles = [
"Image 0 - Keypoints",
"Image 1 - Keypoints",
]
output_keypoints = plot_images([image0, image1], titles=titles, dpi=300)
if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
plot_keypoints([pred["keypoints0"], pred["keypoints1"]])
text = (
f"# keypoints0: {len(pred['keypoints0'])} \n"
+ f"# keypoints1: {len(pred['keypoints1'])}"
)
add_text(0, text, fs=15)
output_keypoints = fig2im(output_keypoints)
# plot images with raw matches
titles = [
"Image 0 - Raw matched keypoints",
"Image 1 - Raw matched keypoints",
]
output_matches_raw, num_matches_raw = display_matches(pred, titles=titles)
# if enable_ransac:
filter_matches(
pred,
ransac_method=ransac_method,
ransac_reproj_threshold=ransac_reproj_threshold,
ransac_confidence=ransac_confidence,
ransac_max_iter=ransac_max_iter,
)
# plot images with ransac matches
titles = [
"Image 0 - Ransac matched keypoints",
"Image 1 - Ransac matched keypoints",
]
output_matches_ransac, num_matches_ransac = display_matches(
pred, titles=titles
)
# plot wrapped images
geom_info = compute_geom(pred)
output_wrapped, _ = change_estimate_geom(
pred["image0_orig"],
pred["image1_orig"],
{"geom_info": geom_info},
choice_estimate_geom,
)
del pred
return (
output_keypoints,
output_matches_raw,
output_matches_ransac,
{
"number raw matches": num_matches_raw,
"number ransac matches": num_matches_ransac,
},
{
"match_conf": match_conf,
"extractor_conf": extract_conf,
},
{
"geom_info": geom_info,
},
output_wrapped,
)
# @ref: https://docs.opencv.org/4.x/d0/d74/md__build_4_x-contrib_docs-lin64_opencv_doc_tutorials_calib3d_usac.html
# AND: https://opencv.org/blog/2021/06/09/evaluating-opencvs-new-ransacs
ransac_zoo = {
"RANSAC": cv2.RANSAC,
"USAC_MAGSAC": cv2.USAC_MAGSAC,
"USAC_DEFAULT": cv2.USAC_DEFAULT,
"USAC_FM_8PTS": cv2.USAC_FM_8PTS,
"USAC_PROSAC": cv2.USAC_PROSAC,
"USAC_FAST": cv2.USAC_FAST,
"USAC_ACCURATE": cv2.USAC_ACCURATE,
"USAC_PARALLEL": cv2.USAC_PARALLEL,
}
# Matchers collections
matcher_zoo = {
# 'dedode-sparse': {
# 'config': match_dense.confs['dedode_sparse'],
# 'dense': True # dense mode, we need 2 images
# },
"roma": {"config": match_dense.confs["roma"], "dense": True},
"loftr": {"config": match_dense.confs["loftr"], "dense": True},
"topicfm": {"config": match_dense.confs["topicfm"], "dense": True},
"aspanformer": {"config": match_dense.confs["aspanformer"], "dense": True},
"dedode": {
"config": match_features.confs["Dual-Softmax"],
"config_feature": extract_features.confs["dedode"],
"dense": False,
},
"superpoint+superglue": {
"config": match_features.confs["superglue"],
"config_feature": extract_features.confs["superpoint_max"],
"dense": False,
},
"superpoint+lightglue": {
"config": match_features.confs["superpoint-lightglue"],
"config_feature": extract_features.confs["superpoint_max"],
"dense": False,
},
"disk": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["disk"],
"dense": False,
},
"disk+dualsoftmax": {
"config": match_features.confs["Dual-Softmax"],
"config_feature": extract_features.confs["disk"],
"dense": False,
},
"superpoint+dualsoftmax": {
"config": match_features.confs["Dual-Softmax"],
"config_feature": extract_features.confs["superpoint_max"],
"dense": False,
},
"disk+lightglue": {
"config": match_features.confs["disk-lightglue"],
"config_feature": extract_features.confs["disk"],
"dense": False,
},
"superpoint+mnn": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["superpoint_max"],
"dense": False,
},
"sift+sgmnet": {
"config": match_features.confs["sgmnet"],
"config_feature": extract_features.confs["sift"],
"dense": False,
},
"sosnet": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["sosnet"],
"dense": False,
},
"hardnet": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["hardnet"],
"dense": False,
},
"d2net": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["d2net-ss"],
"dense": False,
},
"rord": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["rord"],
"dense": False,
},
# "d2net-ms": {
# "config": match_features.confs["NN-mutual"],
# "config_feature": extract_features.confs["d2net-ms"],
# "dense": False,
# },
"alike": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["alike"],
"dense": False,
},
"lanet": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["lanet"],
"dense": False,
},
"r2d2": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["r2d2"],
"dense": False,
},
"darkfeat": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["darkfeat"],
"dense": False,
},
"sift": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["sift"],
"dense": False,
},
"gluestick": {"config": match_dense.confs["gluestick"], "dense": True},
"sold2": {"config": match_dense.confs["sold2"], "dense": True},
# "DKMv3": {"config": match_dense.confs["dkm"], "dense": True},
}