Spaces:
Running
Running
# Copyright 2019-present NAVER Corp. | |
# CC BY-NC-SA 3.0 | |
# Available only for non-commercial use | |
import pdb | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from nets.ap_loss import APLoss | |
class PixelAPLoss(nn.Module): | |
"""Computes the pixel-wise AP loss: | |
Given two images and ground-truth optical flow, computes the AP per pixel. | |
feat1: (B, C, H, W) pixel-wise features extracted from img1 | |
feat2: (B, C, H, W) pixel-wise features extracted from img2 | |
aflow: (B, 2, H, W) absolute flow: aflow[...,y1,x1] = x2,y2 | |
""" | |
def __init__(self, sampler, nq=20): | |
nn.Module.__init__(self) | |
self.aploss = APLoss(nq, min=0, max=1, euc=False) | |
self.name = "pixAP" | |
self.sampler = sampler | |
def loss_from_ap(self, ap, rel): | |
return 1 - ap | |
def forward(self, descriptors, aflow, **kw): | |
# subsample things | |
scores, gt, msk, qconf = self.sampler(descriptors, kw.get("reliability"), aflow) | |
# compute pixel-wise AP | |
n = qconf.numel() | |
if n == 0: | |
return 0 | |
scores, gt = scores.view(n, -1), gt.view(n, -1) | |
ap = self.aploss(scores, gt).view(msk.shape) | |
pixel_loss = self.loss_from_ap(ap, qconf) | |
loss = pixel_loss[msk].mean() | |
return loss | |
class ReliabilityLoss(PixelAPLoss): | |
"""same than PixelAPLoss, but also train a pixel-wise confidence | |
that this pixel is going to have a good AP. | |
""" | |
def __init__(self, sampler, base=0.5, **kw): | |
PixelAPLoss.__init__(self, sampler, **kw) | |
assert 0 <= base < 1 | |
self.base = base | |
self.name = "reliability" | |
def loss_from_ap(self, ap, rel): | |
return 1 - ap * rel - (1 - rel) * self.base | |