Spaces:
Running
Running
import torch | |
from .nn import NN2 | |
from darkfeat import DarkFeat | |
class NNMatching(torch.nn.Module): | |
def __init__(self, model_path=""): | |
super().__init__() | |
self.nn = NN2().eval() | |
self.darkfeat = DarkFeat(model_path).eval() | |
def forward(self, data): | |
"""Run DarkFeat and nearest neighborhood matching | |
Args: | |
data: dictionary with minimal keys: ['image0', 'image1'] | |
""" | |
pred = {} | |
# Extract DarkFeat (keypoints, scores, descriptors) | |
if "keypoints0" not in data: | |
pred0 = self.darkfeat({"image": data["image0"]}) | |
# print({k+'0': v[0].shape for k, v in pred0.items()}) | |
pred = {**pred, **{k + "0": [v] for k, v in pred0.items()}} | |
if "keypoints1" not in data: | |
pred1 = self.darkfeat({"image": data["image1"]}) | |
pred = {**pred, **{k + "1": [v] for k, v in pred1.items()}} | |
# Batch all features | |
# We should either have i) one image per batch, or | |
# ii) the same number of local features for all images in the batch. | |
data = {**data, **pred} | |
for k in data: | |
if isinstance(data[k], (list, tuple)): | |
data[k] = torch.stack(data[k]) | |
# Perform the matching | |
pred = {**pred, **self.nn(data)} | |
return pred | |