Spaces:
Running
Running
import collections.abc as collections | |
from pathlib import Path | |
import torch | |
GLUESTICK_ROOT = Path(__file__).parent.parent | |
def get_class(mod_name, base_path, BaseClass): | |
"""Get the class object which inherits from BaseClass and is defined in | |
the module named mod_name, child of base_path. | |
""" | |
import inspect | |
mod_path = "{}.{}".format(base_path, mod_name) | |
mod = __import__(mod_path, fromlist=[""]) | |
classes = inspect.getmembers(mod, inspect.isclass) | |
# Filter classes defined in the module | |
classes = [c for c in classes if c[1].__module__ == mod_path] | |
# Filter classes inherited from BaseModel | |
classes = [c for c in classes if issubclass(c[1], BaseClass)] | |
assert len(classes) == 1, classes | |
return classes[0][1] | |
def get_model(name): | |
from .models.base_model import BaseModel | |
return get_class("models." + name, __name__, BaseModel) | |
def numpy_image_to_torch(image): | |
"""Normalize the image tensor and reorder the dimensions.""" | |
if image.ndim == 3: | |
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW | |
elif image.ndim == 2: | |
image = image[None] # add channel axis | |
else: | |
raise ValueError(f"Not an image: {image.shape}") | |
return torch.from_numpy(image / 255.0).float() | |
def map_tensor(input_, func): | |
if isinstance(input_, (str, bytes)): | |
return input_ | |
elif isinstance(input_, collections.Mapping): | |
return {k: map_tensor(sample, func) for k, sample in input_.items()} | |
elif isinstance(input_, collections.Sequence): | |
return [map_tensor(sample, func) for sample in input_] | |
else: | |
return func(input_) | |
def batch_to_np(batch): | |
return map_tensor(batch, lambda t: t.detach().cpu().numpy()[0]) | |