Spaces:
Running
Running
from typing import Optional, Union | |
import torch | |
from torch import device | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.models as tvm | |
import gc | |
class ResNet50(nn.Module): | |
def __init__(self, pretrained=False, high_res = False, weights = None, | |
dilation = None, freeze_bn = True, anti_aliased = False, early_exit = False, amp = False, amp_dtype = torch.float16) -> None: | |
super().__init__() | |
if dilation is None: | |
dilation = [False,False,False] | |
if anti_aliased: | |
pass | |
else: | |
if weights is not None: | |
self.net = tvm.resnet50(weights = weights,replace_stride_with_dilation=dilation) | |
else: | |
self.net = tvm.resnet50(pretrained=pretrained,replace_stride_with_dilation=dilation) | |
self.high_res = high_res | |
self.freeze_bn = freeze_bn | |
self.early_exit = early_exit | |
self.amp = amp | |
self.amp_dtype = amp_dtype | |
def forward(self, x, **kwargs): | |
with torch.autocast("cuda", enabled=self.amp, dtype = self.amp_dtype): | |
net = self.net | |
feats = {1:x} | |
x = net.conv1(x) | |
x = net.bn1(x) | |
x = net.relu(x) | |
feats[2] = x | |
x = net.maxpool(x) | |
x = net.layer1(x) | |
feats[4] = x | |
x = net.layer2(x) | |
feats[8] = x | |
if self.early_exit: | |
return feats | |
x = net.layer3(x) | |
feats[16] = x | |
x = net.layer4(x) | |
feats[32] = x | |
return feats | |
def train(self, mode=True): | |
super().train(mode) | |
if self.freeze_bn: | |
for m in self.modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
m.eval() | |
pass | |
class VGG19(nn.Module): | |
def __init__(self, pretrained=False, amp = False, amp_dtype = torch.float16) -> None: | |
super().__init__() | |
self.layers = nn.ModuleList(tvm.vgg19_bn(pretrained=pretrained).features[:40]) | |
self.amp = amp | |
self.amp_dtype = amp_dtype | |
def forward(self, x, **kwargs): | |
with torch.autocast("cuda", enabled=self.amp, dtype = self.amp_dtype): | |
feats = {} | |
scale = 1 | |
for layer in self.layers: | |
if isinstance(layer, nn.MaxPool2d): | |
feats[scale] = x | |
scale = scale*2 | |
x = layer(x) | |
return feats | |
class CNNandDinov2(nn.Module): | |
def __init__(self, cnn_kwargs = None, amp = False, use_vgg = False, dinov2_weights = None, amp_dtype = torch.float16): | |
super().__init__() | |
if dinov2_weights is None: | |
dinov2_weights = torch.hub.load_state_dict_from_url("https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth", map_location="cpu") | |
from .transformer import vit_large | |
vit_kwargs = dict(img_size= 518, | |
patch_size= 14, | |
init_values = 1.0, | |
ffn_layer = "mlp", | |
block_chunks = 0, | |
) | |
dinov2_vitl14 = vit_large(**vit_kwargs).eval() | |
dinov2_vitl14.load_state_dict(dinov2_weights) | |
cnn_kwargs = cnn_kwargs if cnn_kwargs is not None else {} | |
if not use_vgg: | |
self.cnn = ResNet50(**cnn_kwargs) | |
else: | |
self.cnn = VGG19(**cnn_kwargs) | |
self.amp = amp | |
self.amp_dtype = amp_dtype | |
if self.amp: | |
dinov2_vitl14 = dinov2_vitl14.to(self.amp_dtype) | |
self.dinov2_vitl14 = [dinov2_vitl14] # ugly hack to not show parameters to DDP | |
def train(self, mode: bool = True): | |
return self.cnn.train(mode) | |
def forward(self, x, upsample = False): | |
B,C,H,W = x.shape | |
feature_pyramid = self.cnn(x) | |
if not upsample: | |
with torch.no_grad(): | |
if self.dinov2_vitl14[0].device != x.device: | |
self.dinov2_vitl14[0] = self.dinov2_vitl14[0].to(x.device).to(self.amp_dtype) | |
dinov2_features_16 = self.dinov2_vitl14[0].forward_features(x.to(self.amp_dtype)) | |
features_16 = dinov2_features_16['x_norm_patchtokens'].permute(0,2,1).reshape(B,1024,H//14, W//14) | |
del dinov2_features_16 | |
feature_pyramid[16] = features_16 | |
return feature_pyramid |