Spaces:
Running
Running
import argparse | |
import imagesize | |
import numpy as np | |
import os | |
parser = argparse.ArgumentParser(description="MegaDepth preprocessing script") | |
parser.add_argument("--base_path", type=str, required=True, help="path to MegaDepth") | |
parser.add_argument("--scene_id", type=str, required=True, help="scene ID") | |
parser.add_argument( | |
"--output_path", type=str, required=True, help="path to the output directory" | |
) | |
args = parser.parse_args() | |
base_path = args.base_path | |
# Remove the trailing / if need be. | |
if base_path[-1] in ["/", "\\"]: | |
base_path = base_path[:-1] | |
scene_id = args.scene_id | |
base_depth_path = os.path.join(base_path, "phoenix/S6/zl548/MegaDepth_v1") | |
base_undistorted_sfm_path = os.path.join(base_path, "Undistorted_SfM") | |
undistorted_sparse_path = os.path.join( | |
base_undistorted_sfm_path, scene_id, "sparse-txt" | |
) | |
if not os.path.exists(undistorted_sparse_path): | |
exit() | |
depths_path = os.path.join(base_depth_path, scene_id, "dense0", "depths") | |
if not os.path.exists(depths_path): | |
exit() | |
images_path = os.path.join(base_undistorted_sfm_path, scene_id, "images") | |
if not os.path.exists(images_path): | |
exit() | |
# Process cameras.txt | |
with open(os.path.join(undistorted_sparse_path, "cameras.txt"), "r") as f: | |
raw = f.readlines()[3:] # skip the header | |
camera_intrinsics = {} | |
for camera in raw: | |
camera = camera.split(" ") | |
camera_intrinsics[int(camera[0])] = [float(elem) for elem in camera[2:]] | |
# Process points3D.txt | |
with open(os.path.join(undistorted_sparse_path, "points3D.txt"), "r") as f: | |
raw = f.readlines()[3:] # skip the header | |
points3D = {} | |
for point3D in raw: | |
point3D = point3D.split(" ") | |
points3D[int(point3D[0])] = np.array( | |
[float(point3D[1]), float(point3D[2]), float(point3D[3])] | |
) | |
# Process images.txt | |
with open(os.path.join(undistorted_sparse_path, "images.txt"), "r") as f: | |
raw = f.readlines()[4:] # skip the header | |
image_id_to_idx = {} | |
image_names = [] | |
raw_pose = [] | |
camera = [] | |
points3D_id_to_2D = [] | |
n_points3D = [] | |
for idx, (image, points) in enumerate(zip(raw[::2], raw[1::2])): | |
image = image.split(" ") | |
points = points.split(" ") | |
image_id_to_idx[int(image[0])] = idx | |
image_name = image[-1].strip("\n") | |
image_names.append(image_name) | |
raw_pose.append([float(elem) for elem in image[1:-2]]) | |
camera.append(int(image[-2])) | |
current_points3D_id_to_2D = {} | |
for x, y, point3D_id in zip(points[::3], points[1::3], points[2::3]): | |
if int(point3D_id) == -1: | |
continue | |
current_points3D_id_to_2D[int(point3D_id)] = [float(x), float(y)] | |
points3D_id_to_2D.append(current_points3D_id_to_2D) | |
n_points3D.append(len(current_points3D_id_to_2D)) | |
n_images = len(image_names) | |
# Image and depthmaps paths | |
image_paths = [] | |
depth_paths = [] | |
for image_name in image_names: | |
image_path = os.path.join(images_path, image_name) | |
# Path to the depth file | |
depth_path = os.path.join(depths_path, "%s.h5" % os.path.splitext(image_name)[0]) | |
if os.path.exists(depth_path): | |
# Check if depth map or background / foreground mask | |
file_size = os.stat(depth_path).st_size | |
# Rough estimate - 75KB might work as well | |
if file_size < 100 * 1024: | |
depth_paths.append(None) | |
image_paths.append(None) | |
else: | |
depth_paths.append(depth_path[len(base_path) + 1 :]) | |
image_paths.append(image_path[len(base_path) + 1 :]) | |
else: | |
depth_paths.append(None) | |
image_paths.append(None) | |
# Camera configuration | |
intrinsics = [] | |
poses = [] | |
principal_axis = [] | |
points3D_id_to_ndepth = [] | |
for idx, image_name in enumerate(image_names): | |
if image_paths[idx] is None: | |
intrinsics.append(None) | |
poses.append(None) | |
principal_axis.append([0, 0, 0]) | |
points3D_id_to_ndepth.append({}) | |
continue | |
image_intrinsics = camera_intrinsics[camera[idx]] | |
K = np.zeros([3, 3]) | |
K[0, 0] = image_intrinsics[2] | |
K[0, 2] = image_intrinsics[4] | |
K[1, 1] = image_intrinsics[3] | |
K[1, 2] = image_intrinsics[5] | |
K[2, 2] = 1 | |
intrinsics.append(K) | |
image_pose = raw_pose[idx] | |
qvec = image_pose[:4] | |
qvec = qvec / np.linalg.norm(qvec) | |
w, x, y, z = qvec | |
R = np.array( | |
[ | |
[1 - 2 * y * y - 2 * z * z, 2 * x * y - 2 * z * w, 2 * x * z + 2 * y * w], | |
[2 * x * y + 2 * z * w, 1 - 2 * x * x - 2 * z * z, 2 * y * z - 2 * x * w], | |
[2 * x * z - 2 * y * w, 2 * y * z + 2 * x * w, 1 - 2 * x * x - 2 * y * y], | |
] | |
) | |
principal_axis.append(R[2, :]) | |
t = image_pose[4:7] | |
# World-to-Camera pose | |
current_pose = np.zeros([4, 4]) | |
current_pose[:3, :3] = R | |
current_pose[:3, 3] = t | |
current_pose[3, 3] = 1 | |
# Camera-to-World pose | |
# pose = np.zeros([4, 4]) | |
# pose[: 3, : 3] = np.transpose(R) | |
# pose[: 3, 3] = -np.matmul(np.transpose(R), t) | |
# pose[3, 3] = 1 | |
poses.append(current_pose) | |
current_points3D_id_to_ndepth = {} | |
for point3D_id in points3D_id_to_2D[idx].keys(): | |
p3d = points3D[point3D_id] | |
current_points3D_id_to_ndepth[point3D_id] = (np.dot(R[2, :], p3d) + t[2]) / ( | |
0.5 * (K[0, 0] + K[1, 1]) | |
) | |
points3D_id_to_ndepth.append(current_points3D_id_to_ndepth) | |
principal_axis = np.array(principal_axis) | |
angles = np.rad2deg( | |
np.arccos(np.clip(np.dot(principal_axis, np.transpose(principal_axis)), -1, 1)) | |
) | |
# Compute overlap score | |
overlap_matrix = np.full([n_images, n_images], -1.0) | |
scale_ratio_matrix = np.full([n_images, n_images], -1.0) | |
for idx1 in range(n_images): | |
if image_paths[idx1] is None or depth_paths[idx1] is None: | |
continue | |
for idx2 in range(idx1 + 1, n_images): | |
if image_paths[idx2] is None or depth_paths[idx2] is None: | |
continue | |
matches = points3D_id_to_2D[idx1].keys() & points3D_id_to_2D[idx2].keys() | |
min_num_points3D = min( | |
len(points3D_id_to_2D[idx1]), len(points3D_id_to_2D[idx2]) | |
) | |
overlap_matrix[idx1, idx2] = len(matches) / len( | |
points3D_id_to_2D[idx1] | |
) # min_num_points3D | |
overlap_matrix[idx2, idx1] = len(matches) / len( | |
points3D_id_to_2D[idx2] | |
) # min_num_points3D | |
if len(matches) == 0: | |
continue | |
points3D_id_to_ndepth1 = points3D_id_to_ndepth[idx1] | |
points3D_id_to_ndepth2 = points3D_id_to_ndepth[idx2] | |
nd1 = np.array([points3D_id_to_ndepth1[match] for match in matches]) | |
nd2 = np.array([points3D_id_to_ndepth2[match] for match in matches]) | |
min_scale_ratio = np.min(np.maximum(nd1 / nd2, nd2 / nd1)) | |
scale_ratio_matrix[idx1, idx2] = min_scale_ratio | |
scale_ratio_matrix[idx2, idx1] = min_scale_ratio | |
np.savez( | |
os.path.join(args.output_path, "%s.npz" % scene_id), | |
image_paths=image_paths, | |
depth_paths=depth_paths, | |
intrinsics=intrinsics, | |
poses=poses, | |
overlap_matrix=overlap_matrix, | |
scale_ratio_matrix=scale_ratio_matrix, | |
angles=angles, | |
n_points3D=n_points3D, | |
points3D_id_to_2D=points3D_id_to_2D, | |
points3D_id_to_ndepth=points3D_id_to_ndepth, | |
) | |