Spaces:
Running
Running
Upload Allam_Backend_HF.py
Browse files- Allam_Backend_HF.py +267 -0
Allam_Backend_HF.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import requests
|
6 |
+
import os
|
7 |
+
#import huggingface_hub
|
8 |
+
hf_token = os.getenv("hf_token")
|
9 |
+
#huggingface_hub.login(hf_token)
|
10 |
+
|
11 |
+
df = pd.read_excel("Allam_SA_Articles.xlsx")
|
12 |
+
input_texts = df['Article_text'].tolist()
|
13 |
+
MOJ_embeddings = np.load('Allam_embeddings.npy')
|
14 |
+
|
15 |
+
|
16 |
+
def embed_single_text(query):
|
17 |
+
headers = {
|
18 |
+
"Authorization": f"Bearer {hf_token}"
|
19 |
+
}
|
20 |
+
|
21 |
+
url = f"https://allam-llm-e5-embeddings.hf.space/e5_embeddings?query={query}"
|
22 |
+
|
23 |
+
response = requests.get(url, headers=headers)
|
24 |
+
|
25 |
+
if response.status_code == 200:
|
26 |
+
return torch.tensor(response.json())
|
27 |
+
else:
|
28 |
+
print(f"Error: {response.status_code}")
|
29 |
+
return None
|
30 |
+
|
31 |
+
|
32 |
+
#Faiss
|
33 |
+
dimension = MOJ_embeddings.shape[1]
|
34 |
+
index = faiss.IndexFlatIP(dimension)
|
35 |
+
index.add(MOJ_embeddings)
|
36 |
+
|
37 |
+
def query_search(query, K):
|
38 |
+
query_embedding = embed_single_text(query)
|
39 |
+
distances, indices = index.search(query_embedding, K)
|
40 |
+
|
41 |
+
results = []
|
42 |
+
for idx in indices[0]:
|
43 |
+
file_id = df.iloc[idx]['File_ID']
|
44 |
+
row_number = df.iloc[idx]['Row_Number']
|
45 |
+
#results.append((file_id, row_number))
|
46 |
+
results.append(idx)
|
47 |
+
return results
|
48 |
+
|
49 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
50 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
51 |
+
|
52 |
+
def return_top5_chunks(query):
|
53 |
+
matching_indices = query_search(query, 15)
|
54 |
+
relevant_rows = df.iloc[matching_indices]
|
55 |
+
|
56 |
+
def chunk_text(text, max_words=150):
|
57 |
+
words = text.split()
|
58 |
+
return [' '.join(words[i:i+max_words]) for i in range(0, len(words), max_words)]
|
59 |
+
|
60 |
+
relevant_rows['Chunks'] = relevant_rows['Article_text'].apply(chunk_text)
|
61 |
+
|
62 |
+
chunked_texts = []
|
63 |
+
for idx, row in relevant_rows.iterrows():
|
64 |
+
for chunk in row['Chunks']:
|
65 |
+
chunked_texts.append((chunk, idx))
|
66 |
+
|
67 |
+
def find_top_k_similar(texts, query, k):
|
68 |
+
documents = [text for text, _ in texts]
|
69 |
+
|
70 |
+
vectorizer = TfidfVectorizer()
|
71 |
+
|
72 |
+
all_texts = documents + [query]
|
73 |
+
|
74 |
+
tfidf_matrix = vectorizer.fit_transform(all_texts)
|
75 |
+
|
76 |
+
similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()
|
77 |
+
|
78 |
+
top_k_indices = similarities.argsort()[-k:][::-1]
|
79 |
+
return [(texts[i], similarities[i]) for i in top_k_indices]
|
80 |
+
|
81 |
+
top_5_chunks = find_top_k_similar(chunked_texts, query, 5)
|
82 |
+
|
83 |
+
chunks_txt = ''
|
84 |
+
for i, ((chunk, idx), similarity) in enumerate(top_5_chunks):
|
85 |
+
chunks_txt += f"Index: {idx},\nChunk: {chunk}\n"
|
86 |
+
|
87 |
+
if i < len(top_5_chunks) - 1:
|
88 |
+
chunks_txt += "##########\n"
|
89 |
+
|
90 |
+
return chunks_txt
|
91 |
+
|
92 |
+
|
93 |
+
import requests
|
94 |
+
|
95 |
+
|
96 |
+
api_key = 'UEGtyhQpPCKfhsQ_rPlBbEsgZErSh8xPU57qm9DQ-ZkC'
|
97 |
+
|
98 |
+
url = "https://iam.cloud.ibm.com/identity/token"
|
99 |
+
|
100 |
+
headers = {
|
101 |
+
"Content-Type": "application/x-www-form-urlencoded"
|
102 |
+
}
|
103 |
+
|
104 |
+
data = {
|
105 |
+
"grant_type": "urn:ibm:params:oauth:grant-type:apikey",
|
106 |
+
"apikey": api_key
|
107 |
+
}
|
108 |
+
|
109 |
+
response = requests.post(url, headers=headers, data=data)
|
110 |
+
token_info = response.json()
|
111 |
+
access_token = token_info['access_token']
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
def allam_response(context, query):
|
117 |
+
url = "https://eu-de.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29"
|
118 |
+
|
119 |
+
input_text_base = f"""
|
120 |
+
[Context]: {context}
|
121 |
+
[System]:
|
122 |
+
You are an Arabic frindley chatbot named مستنير.
|
123 |
+
You will be provided with an Arabic context ,
|
124 |
+
Your task is to extract and Answer for the questions only from the context provided
|
125 |
+
elaborate on the answer from the context
|
126 |
+
At the end of your response mention the Article : مادة
|
127 |
+
if no answer is found apologize
|
128 |
+
|
129 |
+
Question: {query}
|
130 |
+
"""
|
131 |
+
body = {
|
132 |
+
"input": input_text_base,
|
133 |
+
"parameters": {
|
134 |
+
"decoding_method": "greedy",
|
135 |
+
"max_new_tokens": 900,
|
136 |
+
"min_new_tokens": 0,
|
137 |
+
"stop_sequences": [],
|
138 |
+
"repetition_penalty": 1
|
139 |
+
},
|
140 |
+
"model_id": "sdaia/allam-1-13b-instruct",
|
141 |
+
"project_id": "72a4dcd4-e6e9-4cdc-9c7e-1a0ef1483936"
|
142 |
+
}
|
143 |
+
|
144 |
+
headers = {
|
145 |
+
"Accept": "application/json",
|
146 |
+
"Content-Type": "application/json",
|
147 |
+
"Authorization": f"Bearer {access_token}"
|
148 |
+
}
|
149 |
+
|
150 |
+
response = requests.post(url, headers=headers, json=body)
|
151 |
+
|
152 |
+
if response.status_code != 200:
|
153 |
+
raise Exception("Non-200 response: " + str(response.text))
|
154 |
+
|
155 |
+
response = response.json()
|
156 |
+
|
157 |
+
return response['results'][0]['generated_text']
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
import json
|
162 |
+
|
163 |
+
import re
|
164 |
+
|
165 |
+
def index_num(text):
|
166 |
+
|
167 |
+
match = re.search(r'"Index":\s*"(\d+)"', text)
|
168 |
+
index_number = match.group(1) if match else None
|
169 |
+
|
170 |
+
return int(index_number)
|
171 |
+
|
172 |
+
def get_top_matching_chunk(text, query, max_words=500):
|
173 |
+
def chunk_text(text, max_words):
|
174 |
+
words = text.split()
|
175 |
+
return [' '.join(words[i:i+max_words]) for i in range(0, len(words), max_words)]
|
176 |
+
|
177 |
+
chunks = chunk_text(text, max_words)
|
178 |
+
|
179 |
+
vectorizer = TfidfVectorizer()
|
180 |
+
all_texts = chunks + [query]
|
181 |
+
tfidf_matrix = vectorizer.fit_transform(all_texts)
|
182 |
+
|
183 |
+
similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()
|
184 |
+
|
185 |
+
top_chunk_index = similarities.argmax()
|
186 |
+
|
187 |
+
return chunks[top_chunk_index]
|
188 |
+
|
189 |
+
def reformat_indentation(text, indent_spaces=4):
|
190 |
+
indent = ' ' * indent_spaces
|
191 |
+
|
192 |
+
lines = text.splitlines()
|
193 |
+
|
194 |
+
formatted_lines = [indent + line.strip() for line in lines]
|
195 |
+
|
196 |
+
return '\n'.join(formatted_lines)
|
197 |
+
|
198 |
+
def return_index_num(data_text, query):
|
199 |
+
|
200 |
+
url = "https://eu-de.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29"
|
201 |
+
|
202 |
+
sys_prompt = """
|
203 |
+
Identify the **first** Index chunk with the answer to a given question.
|
204 |
+
Chunks are seperated by ##########
|
205 |
+
Respond only with **Json** format **do not return any words**:
|
206 |
+
|
207 |
+
{"Index": "extracted_Index"}
|
208 |
+
|
209 |
+
Or:
|
210 |
+
|
211 |
+
{"Index": "not_found"}
|
212 |
+
|
213 |
+
**No additional text allowed**.
|
214 |
+
|
215 |
+
"""
|
216 |
+
sys_prompt += f"Question : {query}"
|
217 |
+
|
218 |
+
input_text = f"""
|
219 |
+
[Context]: {data_text.strip()}
|
220 |
+
[System]: {sys_prompt.strip()}
|
221 |
+
"""
|
222 |
+
|
223 |
+
input_text = reformat_indentation(input_text, indent_spaces=0)
|
224 |
+
body = {
|
225 |
+
"input": input_text,
|
226 |
+
"parameters": {
|
227 |
+
"decoding_method": "greedy",
|
228 |
+
"max_new_tokens": 20,
|
229 |
+
"repetition_penalty": 1
|
230 |
+
},
|
231 |
+
"model_id": "sdaia/allam-1-13b-instruct",
|
232 |
+
"project_id": "72a4dcd4-e6e9-4cdc-9c7e-1a0ef1483936"
|
233 |
+
}
|
234 |
+
|
235 |
+
headers = {
|
236 |
+
"Accept": "application/json",
|
237 |
+
"Content-Type": "application/json",
|
238 |
+
"Authorization": f"Bearer {access_token}" # access_token must be defined elsewhere
|
239 |
+
}
|
240 |
+
|
241 |
+
|
242 |
+
response = requests.post(url, headers=headers, json=body)
|
243 |
+
|
244 |
+
if response.status_code != 200:
|
245 |
+
raise Exception("Non-200 response: " + str(response.text))
|
246 |
+
|
247 |
+
response = response.json()
|
248 |
+
|
249 |
+
return(response['results'][0]['generated_text'])
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
def allam_llm(q):
|
254 |
+
|
255 |
+
chunks_text = return_top5_chunks(q)
|
256 |
+
|
257 |
+
targeted_chunk = return_index_num(chunks_text, q)
|
258 |
+
|
259 |
+
index_number = index_num(targeted_chunk)
|
260 |
+
|
261 |
+
text_to_chunk = df['Article_text'][index_number]
|
262 |
+
|
263 |
+
top_chunk = get_top_matching_chunk(text_to_chunk, q)
|
264 |
+
|
265 |
+
allam_res = allam_response(top_chunk, q)
|
266 |
+
|
267 |
+
return allam_res
|