Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -15,35 +15,26 @@ zip_ref = zipfile.ZipFile(local_zip, 'r')
|
|
15 |
zip_ref.extractall('FINAL-EFFICIENTNETV2-B0')
|
16 |
zip_ref.close()
|
17 |
|
18 |
-
local_zip = "FINAL-EFFICIENTNETV2-S.zip"
|
19 |
-
zip_ref = zipfile.ZipFile(local_zip, 'r')
|
20 |
-
zip_ref.extractall('FINAL-EFFICIENTNETV2-S')
|
21 |
-
zip_ref.close()
|
22 |
-
|
23 |
local_zip = "deepfakes-test-images.zip"
|
24 |
zip_ref = zipfile.ZipFile(local_zip, 'r')
|
25 |
zip_ref.extractall('deepfakes-test-images')
|
26 |
zip_ref.close()
|
27 |
|
28 |
|
29 |
-
|
30 |
-
|
31 |
|
32 |
detector = MTCNN()
|
33 |
|
34 |
|
35 |
-
def deepfakespredict(
|
36 |
|
37 |
model = []
|
38 |
labels = ['real', 'fake']
|
39 |
pred = [0, 0]
|
40 |
|
41 |
-
if select_model == "EfficientNetV2-B0":
|
42 |
-
model = model_b0
|
43 |
-
elif select_model == "EfficientNetV2-B0":
|
44 |
-
model = model_s
|
45 |
-
|
46 |
text =""
|
|
|
47 |
face = detector.detect_faces(input_img)
|
48 |
|
49 |
if len(face) > 0:
|
@@ -68,13 +59,15 @@ def deepfakespredict(select_model, input_img ):
|
|
68 |
|
69 |
else:
|
70 |
text = "Face is not detected in the image."
|
|
|
|
|
71 |
|
72 |
-
return text,
|
73 |
|
74 |
|
75 |
title="EfficientNetV2 Deepfakes Image Detector"
|
76 |
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. To use it, simply upload your image, or click one of the examples to load them."
|
77 |
-
examples = [
|
78 |
['deepfakes-test-images/Fake-1.jpg'],
|
79 |
['deepfakes-test-images/Fake-2.jpg'],
|
80 |
['deepfakes-test-images/Fake-3.jpg'],
|
@@ -86,12 +79,13 @@ examples = [ [],[
|
|
86 |
['deepfakes-test-images/Real-3.jpg'],
|
87 |
['deepfakes-test-images/Real-4.jpg'],
|
88 |
['deepfakes-test-images/Real-5.jpg']
|
89 |
-
|
90 |
]
|
91 |
|
92 |
gr.Interface(deepfakespredict,
|
93 |
-
inputs = [
|
94 |
-
outputs=[
|
95 |
title=title,
|
96 |
-
description=description
|
|
|
97 |
).launch()
|
|
|
15 |
zip_ref.extractall('FINAL-EFFICIENTNETV2-B0')
|
16 |
zip_ref.close()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
local_zip = "deepfakes-test-images.zip"
|
19 |
zip_ref = zipfile.ZipFile(local_zip, 'r')
|
20 |
zip_ref.extractall('deepfakes-test-images')
|
21 |
zip_ref.close()
|
22 |
|
23 |
|
24 |
+
model = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-B0")
|
25 |
+
|
26 |
|
27 |
detector = MTCNN()
|
28 |
|
29 |
|
30 |
+
def deepfakespredict(input_img ):
|
31 |
|
32 |
model = []
|
33 |
labels = ['real', 'fake']
|
34 |
pred = [0, 0]
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
text =""
|
37 |
+
text2 =""
|
38 |
face = detector.detect_faces(input_img)
|
39 |
|
40 |
if len(face) > 0:
|
|
|
59 |
|
60 |
else:
|
61 |
text = "Face is not detected in the image."
|
62 |
+
|
63 |
+
text2 = "Real: " + str(np.round(pred[0]*100, 2)) + "%, Fake: " + str(np.round(pred[1]*100, 2)) + "%"
|
64 |
|
65 |
+
return input_img, text, text2, {labels[i]: float(pred[i]) for i in range(2)}
|
66 |
|
67 |
|
68 |
title="EfficientNetV2 Deepfakes Image Detector"
|
69 |
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. To use it, simply upload your image, or click one of the examples to load them."
|
70 |
+
examples = [
|
71 |
['deepfakes-test-images/Fake-1.jpg'],
|
72 |
['deepfakes-test-images/Fake-2.jpg'],
|
73 |
['deepfakes-test-images/Fake-3.jpg'],
|
|
|
79 |
['deepfakes-test-images/Real-3.jpg'],
|
80 |
['deepfakes-test-images/Real-4.jpg'],
|
81 |
['deepfakes-test-images/Real-5.jpg']
|
82 |
+
|
83 |
]
|
84 |
|
85 |
gr.Interface(deepfakespredict,
|
86 |
+
inputs = ["image"],
|
87 |
+
outputs=[gr.outputs.Image(type="pil", label="Detected face"), "text", "text", gr.outputs.Label(num_top_classes=None, type="auto", label="Confidence")],
|
88 |
title=title,
|
89 |
+
description=description,
|
90 |
+
examples = examples
|
91 |
).launch()
|