Spaces:
Configuration error
Configuration error
Upload 3 files
Browse files- README.md +6 -7
- app.py +101 -0
- requirements.txt +4 -0
README.md
CHANGED
|
@@ -1,12 +1,11 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.16.2
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
|
|
|
| 10 |
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: YOLOv8 Segmentation
|
| 3 |
+
emoji: 🔥
|
| 4 |
+
colorFrom: black
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.16.2
|
| 8 |
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: gpl-3.0
|
| 11 |
---
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import sahi
|
| 3 |
+
import torch
|
| 4 |
+
from ultralyticsplus import YOLO, render_model_output
|
| 5 |
+
|
| 6 |
+
# Images
|
| 7 |
+
sahi.utils.file.download_from_url(
|
| 8 |
+
"https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg",
|
| 9 |
+
"highway.jpg",
|
| 10 |
+
)
|
| 11 |
+
sahi.utils.file.download_from_url(
|
| 12 |
+
"https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg",
|
| 13 |
+
"small-vehicles1.jpeg",
|
| 14 |
+
)
|
| 15 |
+
sahi.utils.file.download_from_url(
|
| 16 |
+
"https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/zidane.jpg",
|
| 17 |
+
"zidane.jpg",
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
model_names = [
|
| 22 |
+
"yolov8n-seg.pt",
|
| 23 |
+
"yolov8s-seg.pt",
|
| 24 |
+
"yolov8m-seg.pt",
|
| 25 |
+
"yolov8l-seg.pt",
|
| 26 |
+
"yolov8x-seg.pt",
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
current_model_name = "yolov8m-seg.pt"
|
| 30 |
+
model = YOLO(current_model_name)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def yolov8_inference(
|
| 34 |
+
image: gr.inputs.Image = None,
|
| 35 |
+
model_name: gr.inputs.Dropdown = None,
|
| 36 |
+
image_size: gr.inputs.Slider = 640,
|
| 37 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
| 38 |
+
iou_threshold: gr.inputs.Slider = 0.45,
|
| 39 |
+
):
|
| 40 |
+
"""
|
| 41 |
+
YOLOv8 inference function
|
| 42 |
+
Args:
|
| 43 |
+
image: Input image
|
| 44 |
+
model_name: Name of the model
|
| 45 |
+
image_size: Image size
|
| 46 |
+
conf_threshold: Confidence threshold
|
| 47 |
+
iou_threshold: IOU threshold
|
| 48 |
+
Returns:
|
| 49 |
+
Rendered image
|
| 50 |
+
"""
|
| 51 |
+
global model
|
| 52 |
+
global current_model_name
|
| 53 |
+
if model_name != current_model_name:
|
| 54 |
+
model = YOLO(model_name)
|
| 55 |
+
current_model_name = model_name
|
| 56 |
+
model.overrides["conf"] = conf_threshold
|
| 57 |
+
model.overrides["iou"] = iou_threshold
|
| 58 |
+
results = model.predict(image, imgsz=image_size, return_outputs=True)
|
| 59 |
+
renders = []
|
| 60 |
+
for image_results in model.predict(image, imgsz=image_size, return_outputs=True):
|
| 61 |
+
render = render_model_output(
|
| 62 |
+
model=model, image=image, model_output=image_results
|
| 63 |
+
)
|
| 64 |
+
renders.append(render)
|
| 65 |
+
|
| 66 |
+
return renders[0]
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
inputs = [
|
| 70 |
+
gr.Image(type="filepath", label="Input Image"),
|
| 71 |
+
gr.Dropdown(
|
| 72 |
+
model_names,
|
| 73 |
+
value=current_model_name,
|
| 74 |
+
label="Model type",
|
| 75 |
+
),
|
| 76 |
+
gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"),
|
| 77 |
+
gr.Slider(
|
| 78 |
+
minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"
|
| 79 |
+
),
|
| 80 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
outputs = gr.Image(type="filepath", label="Output Image")
|
| 84 |
+
title = "Ultralytics YOLOv8 Segmentation Demo"
|
| 85 |
+
|
| 86 |
+
examples = [
|
| 87 |
+
["zidane.jpg", "yolov8m-seg.pt", 640, 0.25, 0.45],
|
| 88 |
+
["highway.jpg", "yolov8m-seg.pt", 640, 0.25, 0.45],
|
| 89 |
+
["highway1.jpg", "yolov8m-seg.pt", 640, 0.25, 0.45],
|
| 90 |
+
["small-vehicles1.jpeg", "yolov8m-seg.pt", 640, 0.25, 0.45],
|
| 91 |
+
]
|
| 92 |
+
demo_app = gr.Interface(
|
| 93 |
+
fn=yolov8_inference,
|
| 94 |
+
inputs=inputs,
|
| 95 |
+
outputs=outputs,
|
| 96 |
+
title=title,
|
| 97 |
+
examples=examples,
|
| 98 |
+
cache_examples=True,
|
| 99 |
+
theme="default",
|
| 100 |
+
)
|
| 101 |
+
demo_app.launch(debug=True, enable_queue=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
sahi
|
| 2 |
+
torch
|
| 3 |
+
ultralytics==8.0.6
|
| 4 |
+
ultralyticsplus==0.0.9
|