Spaces:
Sleeping
Sleeping
import os | |
from groq import Groq, GroqError | |
import gradio as gr | |
import torch | |
from parler_tts import ParlerTTSForConditionalGeneration | |
from transformers import AutoTokenizer | |
import soundfile as sf | |
# Initialize Groq client with API key | |
GROQ_API_KEY = "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" | |
# Device setup for Parler-TTS | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
parler_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) | |
parler_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") | |
# Function to transcribe audio using Whisper through Groq, with error handling | |
def transcribe_audio(audio): | |
try: | |
# Ensure the audio is in the correct format supported by Groq | |
audio_input = audio | |
transcription_response = client.transcriptions.create( | |
model="openai/whisper-large-v3", | |
audio=audio_input, | |
) | |
return transcription_response['text'] | |
except GroqError as e: | |
print(f"Groq transcription error: {e}") | |
return "Error: Failed to transcribe audio." | |
# Function to generate a response using LLaMA through Groq, with error handling | |
def generate_response(text): | |
try: | |
chat_completion = client.chat.completions.create( | |
messages=[{"role": "user", "content": text}], | |
model="llama3-70b-8192", # Modify based on the model you're using | |
) | |
return chat_completion.choices[0].message['content'] | |
except GroqError as e: | |
print(f"Groq response generation error: {e}") | |
return "Error: Failed to generate a response." | |
# Function to convert text to speech using Parler-TTS, unchanged | |
def text_to_speech(text): | |
try: | |
description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch." | |
input_ids = parler_tokenizer(description, return_tensors="pt").input_ids.to(device) | |
prompt_input_ids = parler_tokenizer(text, return_tensors="pt").input_ids.to(device) | |
generation = parler_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) | |
audio_arr = generation.cpu().numpy().squeeze() | |
sf.write("parler_tts_out.wav", audio_arr, parler_model.config.sampling_rate) | |
return "parler_tts_out.wav" | |
except Exception as e: | |
print(f"Parler-TTS error: {e}") | |
return "Error: Failed to convert text to speech." | |
# Gradio interface combining all the components, with error handling in each step | |
def chatbot_pipeline(audio): | |
# Step 1: Convert speech to text using Whisper through Groq | |
transcribed_text = transcribe_audio(audio) | |
# If there was an error in transcription, return the error message | |
if "Error" in transcribed_text: | |
return transcribed_text, None | |
# Step 2: Generate a response using LLaMA through Groq | |
response_text = generate_response(transcribed_text) | |
# If there was an error in response generation, return the error message | |
if "Error" in response_text: | |
return response_text, None | |
# Step 3: Convert response text to speech using Parler-TTS | |
response_audio_path = text_to_speech(response_text) | |
# If there was an error in TTS conversion, return the error message | |
if "Error" in response_audio_path: | |
return response_text, None | |
# Return both text and audio for output | |
return response_text, response_audio_path | |
# Gradio interface setup | |
ui = gr.Interface( | |
fn=chatbot_pipeline, | |
inputs=gr.Audio(type="numpy"), # Removed 'source' and 'streaming' | |
outputs=[gr.Textbox(label="Chatbot Response"), gr.Audio(label="Chatbot Voice Response")], | |
live=True | |
) | |
ui.launch() | |