Spaces:
Runtime error
Runtime error
# This cell will generate a unified Gradio app.py content based on all 5 apps provided | |
import os | |
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import joblib | |
import spacy | |
from transformers import pipeline | |
from langchain_core.pydantic import BaseModel, Field | |
from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate | |
from langchain.output_parsers import PydanticOutputParser | |
from langchain_openai import ChatOpenAI | |
# ---------------- Text Translator ---------------- # | |
chat = ChatOpenAI() | |
class TextTranslator(BaseModel): | |
output: str = Field(description="Translated output text") | |
output_parser = PydanticOutputParser(pydantic_object=TextTranslator) | |
format_instructions = output_parser.get_format_instructions() | |
def text_translator(input_text: str, language: str) -> str: | |
human_template = f"Enter the text that you want to translate: {{input_text}}, and enter the language that you want it to translate to {{language}}. {format_instructions}" | |
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) | |
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt]) | |
prompt = chat_prompt.format_prompt(input_text=input_text, language=language, format_instructions=format_instructions) | |
messages = prompt.to_messages() | |
response = chat(messages=messages) | |
output = output_parser.parse(response.content) | |
return output.output | |
# ---------------- Sentiment Analysis ---------------- # | |
sentiment_classifier = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment") | |
def sentiment_analysis(message, history): | |
result = sentiment_classifier(message) | |
return f"Sentiment: {result[0]['label']} (Probability: {result[0]['score']:.2f})" | |
# ---------------- Financial Analyst ---------------- # | |
nlp = spacy.load('en_core_web_sm') | |
nlp.add_pipe('sentencizer') | |
def split_in_sentences(text): | |
doc = nlp(text) | |
return [str(sent).strip() for sent in doc.sents] | |
def make_spans(text, results): | |
results_list = [res['label'] for res in results] | |
return list(zip(split_in_sentences(text), results_list)) | |
auth_token = os.environ.get("HF_Token") | |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") | |
def speech_to_text(speech): | |
return asr(speech)["text"] | |
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") | |
def summarize_text(text): | |
return summarizer(text)[0]['summary_text'] | |
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone') | |
def text_to_sentiment(text): | |
return fin_model(text)[0]["label"] | |
def fin_ner(text): | |
api = gr.Interface.load("dslim/bert-base-NER", src='models', use_auth_token=auth_token) | |
return api(text) | |
def fin_ext(text): | |
results = fin_model(split_in_sentences(text)) | |
return make_spans(text, results) | |
def fls(text): | |
fls_model = pipeline("text-classification", model="demo-org/finbert_fls", tokenizer="demo-org/finbert_fls", use_auth_token=auth_token) | |
results = fls_model(split_in_sentences(text)) | |
return make_spans(text, results) | |
# ---------------- Personal Information Identifier ---------------- # | |
def detect_personal_info(text): | |
pii_model = gr.Interface.load("models/iiiorg/piiranha-v1-detect-personal-information") | |
return pii_model(text) | |
# ---------------- Customer Churn ---------------- # | |
script_dir = os.path.dirname(os.path.abspath(__file__)) | |
pipeline_path = os.path.join(script_dir, 'toolkit', 'pipeline.joblib') | |
model_path = os.path.join(script_dir, 'toolkit', 'Random Forest Classifier.joblib') | |
pipeline_churn = joblib.load(pipeline_path) | |
model_churn = joblib.load(model_path) | |
def calculate_total_charges(tenure, monthly_charges): | |
return tenure * monthly_charges | |
def predict_churn(SeniorCitizen, Partner, Dependents, tenure, | |
InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, | |
StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, | |
MonthlyCharges): | |
TotalCharges = calculate_total_charges(tenure, MonthlyCharges) | |
input_df = pd.DataFrame({ | |
'SeniorCitizen': [SeniorCitizen], | |
'Partner': [Partner], | |
'Dependents': [Dependents], | |
'tenure': [tenure], | |
'InternetService': [InternetService], | |
'OnlineSecurity': [OnlineSecurity], | |
'OnlineBackup': [OnlineBackup], | |
'DeviceProtection': [DeviceProtection], | |
'TechSupport': [TechSupport], | |
'StreamingTV': [StreamingTV], | |
'StreamingMovies': [StreamingMovies], | |
'Contract': [Contract], | |
'PaperlessBilling': [PaperlessBilling], | |
'PaymentMethod': [PaymentMethod], | |
'MonthlyCharges': [MonthlyCharges], | |
'TotalCharges': [TotalCharges] | |
}) | |
cat_cols = [col for col in input_df.columns if input_df[col].dtype == 'object'] | |
num_cols = [col for col in input_df.columns if input_df[col].dtype != 'object'] | |
X_processed = pipeline_churn.transform(input_df) | |
cat_encoder = pipeline_churn.named_steps['preprocessor'].named_transformers_['cat'].named_steps['onehot'] | |
cat_feature_names = cat_encoder.get_feature_names_out(cat_cols) | |
feature_names = num_cols + list(cat_feature_names) | |
final_df = pd.DataFrame(X_processed, columns=feature_names) | |
first_three_columns = final_df.iloc[:, :3] | |
remaining_columns = final_df.iloc[:, 3:] | |
final_df = pd.concat([remaining_columns, first_three_columns], axis=1) | |
prediction_probs = model_churn.predict_proba(final_df)[0] | |
return { | |
"Prediction: CHURN 🔴": prediction_probs[1], | |
"Prediction: STAY ✅": prediction_probs[0] | |
} | |
# ---------------- Interface ---------------- # | |
with gr.Blocks() as app: | |
with gr.Tab("Text Translator"): | |
input_text = gr.Textbox(label="Enter text to translate") | |
lang = gr.Textbox(label="Target language (e.g., Hindi, French)") | |
output_text = gr.Textbox(label="Translated text") | |
gr.Button("Translate").click(fn=text_translator, inputs=[input_text, lang], outputs=output_text) | |
with gr.Tab("Sentiment Analysis"): | |
gr.ChatInterface(sentiment_analysis) | |
with gr.Tab("Financial Analyst"): | |
audio_input = gr.Audio(source="microphone", type="filepath") | |
text = gr.Textbox(label="Transcribed Text") | |
gr.Button("Transcribe").click(fn=speech_to_text, inputs=audio_input, outputs=text) | |
stext = gr.Textbox(label="Summary") | |
gr.Button("Summarize").click(fn=summarize_text, inputs=text, outputs=stext) | |
gr.Button("Financial Tone").click(fn=text_to_sentiment, inputs=stext, outputs=gr.Label()) | |
gr.Button("NER").click(fn=fin_ner, inputs=text, outputs=gr.HighlightedText()) | |
gr.Button("Tone per sentence").click(fn=fin_ext, inputs=text, outputs=gr.HighlightedText()) | |
gr.Button("Forward-looking").click(fn=fls, inputs=text, outputs=gr.HighlightedText()) | |
with gr.Tab("Personal Information Identifier"): | |
pii_input = gr.Textbox(label="Enter text to analyze") | |
pii_output = gr.Textbox(label="Detected Personal Info") | |
gr.Button("Detect").click(fn=detect_personal_info, inputs=pii_input, outputs=pii_output) | |
with gr.Tab("Customer Churn"): | |
churn_inputs = [ | |
gr.Radio(['Yes', 'No'], label="SeniorCitizen"), | |
gr.Radio(['Yes', 'No'], label="Partner"), | |
gr.Radio(['No', 'Yes'], label="Dependents"), | |
gr.Slider(1, 73, step=1, label="Tenure (Months)"), | |
gr.Radio(['DSL', 'Fiber optic', 'No Internet'], label="InternetService"), | |
gr.Radio(['No', 'Yes'], label="OnlineSecurity"), | |
gr.Radio(['No', 'Yes'], label="OnlineBackup"), | |
gr.Radio(['No', 'Yes'], label="DeviceProtection"), | |
gr.Radio(['No', 'Yes'], label="TechSupport"), | |
gr.Radio(['No', 'Yes'], label="StreamingTV"), | |
gr.Radio(['No', 'Yes'], label="StreamingMovies"), | |
gr.Radio(['Month-to-month', 'One year', 'Two year'], label="Contract"), | |
gr.Radio(['Yes', 'No'], label="PaperlessBilling"), | |
gr.Radio(['Electronic check', 'Mailed check', 'Bank transfer (automatic)', 'Credit card (automatic)'], label="PaymentMethod"), | |
gr.Slider(18.40, 118.65, label="MonthlyCharges") | |
] | |
churn_output = gr.Label(label="Churn Prediction") | |
gr.Button("Predict").click(fn=predict_churn, inputs=churn_inputs, outputs=churn_output) | |
app.launch() | |