Spaces:
Sleeping
Sleeping
import os | |
import warnings | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
AutoConfig, | |
BitsAndBytesConfig, | |
CLIPImageProcessor, | |
) | |
import torch | |
from .language_model.llava_phi import LlavaPhiForCausalLM | |
from .language_model.configuration_llava_phi import LlavaPhiConfig | |
IGNORE_INDEX = -100 | |
IMAGE_TOKEN_INDEX = -200 | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
def load_pretrained_model( | |
model_path, | |
model_base, | |
model_name, | |
load_8bit=False, | |
load_4bit=False, | |
device_map="cuda", | |
device="cuda", | |
): | |
kwargs = {"device_map": device_map} | |
if load_8bit: | |
kwargs["load_in_8bit"] = True | |
elif load_4bit: | |
kwargs["load_in_4bit"] = True | |
kwargs["quantization_config"] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
) | |
# else: # TODO: after fine-tuning LLava-Phi, load the model weights with fp16 will pose nan | |
# kwargs['torch_dtype'] = torch.float16 | |
if "phi" in model_name.lower(): | |
# Load LLaVA-Phi model | |
if "lora" in model_name.lower() and model_base is None: | |
warnings.warn( | |
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument." | |
) | |
if "lora" in model_name.lower() and model_base is not None: | |
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
print("Loading LLaVA-Phi from base model...") | |
model = LlavaPhiForCausalLM.from_pretrained( | |
model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs | |
) | |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features | |
if model.lm_head.weight.shape[0] != token_num: | |
model.lm_head.weight = torch.nn.Parameter( | |
torch.empty( | |
token_num, tokem_dim, device=model.device, dtype=model.dtype | |
) | |
) | |
model.model.embed_tokens.weight = torch.nn.Parameter( | |
torch.empty( | |
token_num, tokem_dim, device=model.device, dtype=model.dtype | |
) | |
) | |
print("Loading additional LLaVA-Phi weights...") | |
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): | |
non_lora_trainables = torch.load( | |
os.path.join(model_path, "non_lora_trainables.bin"), | |
map_location="cpu", | |
) | |
else: | |
# this is probably from HF Hub | |
from huggingface_hub import hf_hub_download | |
def load_from_hf(repo_id, filename, subfolder=None): | |
cache_file = hf_hub_download( | |
repo_id=repo_id, filename=filename, subfolder=subfolder | |
) | |
return torch.load(cache_file, map_location="cpu") | |
non_lora_trainables = load_from_hf( | |
model_path, "non_lora_trainables.bin" | |
) | |
non_lora_trainables = { | |
(k[11:] if k.startswith("base_model.") else k): v | |
for k, v in non_lora_trainables.items() | |
} | |
if any(k.startswith("model.model.") for k in non_lora_trainables): | |
non_lora_trainables = { | |
(k[6:] if k.startswith("model.") else k): v | |
for k, v in non_lora_trainables.items() | |
} | |
model.load_state_dict(non_lora_trainables, strict=False) | |
from peft import PeftModel | |
print("Loading LoRA weights...") | |
model = PeftModel.from_pretrained(model, model_path) | |
print("Merging LoRA weights...") | |
model = model.merge_and_unload() | |
print("Model is loaded...") | |
elif model_base is not None: | |
# this may be mm projector only | |
print("Loading LLaVA-Phi from base model...") | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
model = LlavaPhiForCausalLM.from_pretrained( | |
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs | |
) | |
mm_projector_weights = torch.load( | |
os.path.join(model_path, "mm_projector.bin"), map_location="cpu" | |
) | |
mm_projector_weights = { | |
k: v.to(torch.float16) for k, v in mm_projector_weights.items() | |
} | |
model.load_state_dict(mm_projector_weights, strict=False) | |
else: | |
print("load llaVA-Phi MLLM!!!") | |
config = LlavaPhiConfig.from_pretrained(model_path, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | |
model = LlavaPhiForCausalLM.from_pretrained( | |
model_path, config=config, use_safetensors=True, **kwargs | |
).to("cuda") | |
else: | |
# Load language model | |
if model_base is not None: | |
# PEFT model | |
from peft import PeftModel | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_base, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
device_map="auto", | |
) | |
print(f"Loading LoRA weights from {model_path}") | |
model = PeftModel.from_pretrained(model, model_path) | |
print(f"Merging weights") | |
model = model.merge_and_unload() | |
print("Convert to FP16...") | |
model.to(torch.float16) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, low_cpu_mem_usage=True, **kwargs | |
) | |
image_processor = CLIPImageProcessor.from_pretrained(model_path) | |
if "phi" in model_name.lower(): | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | |
# TODO: the tokenizer length of phi-2 is 50295, but the output class of lm_head is 51200 | |
if mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens( | |
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True | |
) | |
# model.resize_token_embeddings(len(tokenizer)) | |
else: | |
raise ValueError(f"Unsupported model name: {model_name}") | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
model.to(device="cuda") | |
print(kwargs) | |
return tokenizer, model, image_processor, context_len | |