MultiModal-Phi2 / app.py
ravi.naik
Added source
8f38740
raw
history blame
4.38 kB
import gradio as gr
from PIL import Image
from inference.main import MultiModalPhi2
messages = []
multimodal_phi2 = MultiModalPhi2(
modelname_or_path="RaviNaik/Llava-Phi2",
temperature=0.2,
max_new_tokens=1024,
device="cpu",
)
def add_content(chatbot, text, image, audio_upload, audio_mic) -> gr.Chatbot:
textflag, imageflag, audioflag = False, False, False
if text not in ["", None]:
chatbot.append((text, None))
textflag = True
if image is not None:
chatbot.append(((image,), None))
imageflag = True
if audio_mic is not None:
chatbot.append(((audio_mic,), None))
audioflag = True
else:
if audio_upload is not None:
chatbot.append(((audio_upload,), None))
audioflag = True
if not any([textflag, imageflag, audioflag]):
# Raise an error if neither text nor file is provided
raise gr.Error("Enter a valid text, image or audio")
return chatbot
def clear_data():
return {prompt: None, image: None, audio_upload: None, audio_mic: None, chatbot: []}
def run(history, text, image, audio_upload, audio_mic):
if text in [None, ""]:
text = None
if audio_upload is not None:
audio = audio_upload
elif audio_mic is not None:
audio = audio_mic
else:
audio = None
print("text", text)
print("image", image)
print("audio", audio)
if image is not None:
image = Image.open(image)
outputs = multimodal_phi2(text, audio, image)
# outputs = ""
history.append((None, outputs.title()))
return history, None, None, None, None
with gr.Blocks() as demo:
gr.Markdown("## MulitModal Phi2 Model Pretraining and Finetuning from Scratch")
gr.Markdown(
"""This is a multimodal implementation of [Phi2](https://huggingface.co/microsoft/phi-2) model.
Please find the source code and training details [here](https://github.com/RaviNaik/ERA-CAPSTONE/MultiModalPhi2).
### Details:
1. LLM Backbone: [Phi2](https://huggingface.co/microsoft/phi-2)
2. Vision Tower: [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336)
3. Audio Model: [Whisper Tiny](https://huggingface.co/openai/whisper-tiny)
4. Pretraining Dataset: [LAION-CC-SBU dataset with BLIP captions(200k samples)](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)
5. Finetuning Dataset: [Instruct 150k dataset based on COCO](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K)
6. Finetuned Model: [RaviNaik/Llava-Phi2](https://huggingface.co/RaviNaik/Llava-Phi2)
"""
)
with gr.Row():
with gr.Column(scale=4):
# Creating a column with a scale of 6
with gr.Box():
with gr.Row():
# Adding a Textbox with a placeholder "write prompt"
prompt = gr.Textbox(
placeholder="Enter Prompt", lines=2, label="Query", value=None
)
# Creating a column with a scale of 2
with gr.Row():
# Adding image
image = gr.Image(type="filepath", value=None)
# Creating a column with a scale of 2
with gr.Row():
# Add audio
audio_upload = gr.Audio(source="upload", type="filepath")
audio_mic = gr.Audio(source="microphone", type="filepath")
with gr.Column(scale=8):
with gr.Box():
with gr.Row():
chatbot = gr.Chatbot(
avatar_images=("πŸ§‘", "πŸ€–"),
height=550,
)
with gr.Row():
# Adding a Button
submit = gr.Button()
clear = gr.Button(value="Clear")
submit.click(
add_content,
inputs=[chatbot, prompt, image, audio_upload, audio_mic],
outputs=[chatbot],
).success(
run,
inputs=[chatbot, prompt, image, audio_upload, audio_mic],
outputs=[chatbot, prompt, image, audio_upload, audio_mic],
)
clear.click(
clear_data,
outputs=[prompt, image, audio_upload, audio_mic, chatbot],
)
demo.launch()