Spaces:
Running
Running
import json | |
import os | |
import fire | |
import re | |
from convert_sqa_to_llava_base_prompt import build_prompt_chatbot | |
def convert_to_llava(base_dir, split, prompt_format="QCM-LEA"): | |
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[split] | |
problems = json.load(open(os.path.join(base_dir, "problems.json"))) | |
split_problems = build_prompt_chatbot( | |
problems, split_indices, prompt_format, | |
use_caption=False, is_test=False) | |
target_format = [] | |
for prob_id, (input, output) in split_problems.items(): | |
if input.startswith('Question: '): | |
input = input.replace('Question: ', '') | |
if output.startswith('Answer: '): | |
output = output.replace('Answer: ', '') | |
raw_prob_data = problems[prob_id] | |
if raw_prob_data['image'] is None: | |
target_format.append({ | |
"id": prob_id, | |
"conversations": [ | |
{'from': 'human', 'value': f"{input}"}, | |
{'from': 'gpt', 'value': f"{output}"}, | |
], | |
}) | |
else: | |
target_format.append({ | |
"id": prob_id, | |
"image": os.path.join(prob_id, raw_prob_data['image']), | |
"conversations": [ | |
{'from': 'human', 'value': f"{input}\n<image>"}, | |
{'from': 'gpt', 'value': f"{output}"}, | |
], | |
}) | |
print(f'Number of samples: {len(target_format)}') | |
with open(os.path.join(base_dir, f"llava_{split}_{prompt_format}.json"), "w") as f: | |
json.dump(target_format, f, indent=2) | |
def convert_to_jsonl(base_dir, split, prompt_format="QCM-LEPA"): | |
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[split] | |
problems = json.load(open(os.path.join(base_dir, "problems.json"))) | |
split_problems = build_prompt_chatbot( | |
problems, split_indices, prompt_format, | |
use_caption=False, is_test=False) | |
writer = open(os.path.join(base_dir, f"scienceqa_{split}_{prompt_format}.jsonl"), "w") | |
for prob_id, (input, output) in split_problems.items(): | |
if input.startswith('Question: '): | |
input = input.replace('Question: ', '') | |
if output.startswith('Answer: '): | |
output = output.replace('Answer: ', '') | |
raw_prob_data = problems[prob_id] | |
if raw_prob_data['image'] is None: | |
data = { | |
"id": prob_id, | |
"instruction": f"{input}", | |
"output": f"{output}", | |
} | |
else: | |
data = { | |
"id": prob_id, | |
"image": os.path.join(prob_id, raw_prob_data['image']), | |
"instruction": f"{input}\n<image>", | |
"output": f"{output}", | |
} | |
writer.write(json.dumps(data) + '\n') | |
writer.close() | |
def main(task, **kwargs): | |
globals()[task](**kwargs) | |
if __name__ == "__main__": | |
fire.Fire(main) | |