ravi.naik
Updated repository for gradio UI and model
17a7426
import sys
import time
from pathlib import Path
from typing import Literal, Optional
import lightning as L
import torch
from lightning.fabric.plugins import BitsandbytesPrecision
from lightning.fabric.strategies import FSDPStrategy
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from generate.base import generate
from lit_gpt import Tokenizer
from lit_gpt.lora import GPT, Block, Config, merge_lora_weights
from lit_gpt.utils import check_valid_checkpoint_dir, get_default_supported_precision, gptq_quantization, lazy_load
from scripts.prepare_alpaca import generate_prompt
lora_r = 8
lora_alpha = 16
lora_dropout = 0.05
lora_query = True
lora_key = False
lora_value = True
lora_projection = False
lora_mlp = False
lora_head = False
def main(
prompt: str = "What food do llamas eat?",
input: str = "",
lora_path: Path = Path("out/lora/alpaca/lit_model_lora_finetuned.pth"),
checkpoint_dir: Path = Path("checkpoints/stabilityai/stablelm-base-alpha-3b"),
quantize: Optional[Literal["bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq", "bnb.int8", "gptq.int4"]] = None,
max_new_tokens: int = 100,
top_k: Optional[int] = 200,
temperature: float = 0.8,
strategy: str = "auto",
devices: int = 1,
precision: Optional[str] = None,
) -> None:
"""Generates a response based on a given instruction and an optional input.
This script will only work with checkpoints from the instruction-tuned GPT-LoRA model.
See `finetune/lora.py`.
Args:
prompt: The prompt/instruction (Alpaca style).
input: Optional input (Alpaca style).
lora_path: Path to the checkpoint with trained adapter weights, which are the output of
`finetune/lora.py`.
checkpoint_dir: The path to the checkpoint folder with pretrained GPT weights.
quantize: Whether to quantize the model and using which method:
- bnb.nf4, bnb.nf4-dq, bnb.fp4, bnb.fp4-dq: 4-bit quantization from bitsandbytes
- bnb.int8: 8-bit quantization from bitsandbytes
- gptq.int4: 4-bit quantization from GPTQ
for more details, see https://github.com/Lightning-AI/lit-gpt/blob/main/tutorials/quantize.md
max_new_tokens: The number of generation steps to take.
top_k: The number of top most probable tokens to consider in the sampling process.
temperature: A value controlling the randomness of the sampling process. Higher values result in more random
samples.
strategy: Indicates the Fabric strategy setting to use.
devices: How many devices to use.
precision: Indicates the Fabric precision setting to use.
"""
precision = precision or get_default_supported_precision(training=False)
plugins = None
if quantize is not None:
if devices > 1:
raise NotImplementedError(
"Quantization is currently not supported for multi-GPU training. Please set devices=1 when using the"
" --quantize flag."
)
if quantize.startswith("bnb."):
if "mixed" in precision:
raise ValueError("Quantization and mixed precision is not supported.")
dtype = {"16-true": torch.float16, "bf16-true": torch.bfloat16, "32-true": torch.float32}[precision]
plugins = BitsandbytesPrecision(quantize[4:], dtype)
precision = None
if strategy == "fsdp":
strategy = FSDPStrategy(auto_wrap_policy={Block}, cpu_offload=False)
fabric = L.Fabric(devices=devices, precision=precision, strategy=strategy, plugins=plugins)
fabric.launch()
check_valid_checkpoint_dir(checkpoint_dir)
config = Config.from_json(
checkpoint_dir / "lit_config.json",
r=lora_r,
alpha=lora_alpha,
dropout=lora_dropout,
to_query=lora_query,
to_key=lora_key,
to_value=lora_value,
to_projection=lora_projection,
to_mlp=lora_mlp,
to_head=lora_head,
)
if quantize is not None and devices > 1:
raise NotImplementedError
if quantize == "gptq.int4":
model_file = "lit_model_gptq.4bit.pth"
if not (checkpoint_dir / model_file).is_file():
raise ValueError("Please run `python quantize/gptq.py` first")
else:
model_file = "lit_model.pth"
checkpoint_path = checkpoint_dir / model_file
tokenizer = Tokenizer(checkpoint_dir)
sample = {"instruction": prompt, "input": input}
prompt = generate_prompt(sample)
encoded = tokenizer.encode(prompt, device=fabric.device)
prompt_length = encoded.size(0)
max_returned_tokens = prompt_length + max_new_tokens
fabric.print(f"Loading model {str(checkpoint_path)!r} with {config.__dict__}", file=sys.stderr)
t0 = time.perf_counter()
with fabric.init_module(empty_init=True), gptq_quantization(quantize == "gptq.int4"):
model = GPT(config)
fabric.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr)
with fabric.init_tensor():
# set the max_seq_length to limit the memory usage to what we need
model.max_seq_length = max_returned_tokens
# enable the kv cache
model.set_kv_cache(batch_size=1)
model.eval()
t0 = time.perf_counter()
checkpoint = lazy_load(checkpoint_path)
lora_checkpoint = lazy_load(lora_path)
checkpoint.update(lora_checkpoint.get("model", lora_checkpoint))
model.load_state_dict(checkpoint)
fabric.print(f"Time to load the model weights: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr)
merge_lora_weights(model)
model = fabric.setup(model)
L.seed_everything(1234)
t0 = time.perf_counter()
y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k, eos_id=tokenizer.eos_id)
t = time.perf_counter() - t0
output = tokenizer.decode(y)
output = output.split("### Response:")[1].strip()
fabric.print(output)
tokens_generated = y.size(0) - prompt_length
fabric.print(f"\n\nTime for inference: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec", file=sys.stderr)
if fabric.device.type == "cuda":
fabric.print(f"Memory used: {torch.cuda.max_memory_allocated() / 1e9:.02f} GB", file=sys.stderr)
if __name__ == "__main__":
from jsonargparse import CLI
torch.set_float32_matmul_precision("high")
CLI(main)