Spaces:
Sleeping
Sleeping
ravi.naik
commited on
Commit
Β·
70f7a67
1
Parent(s):
8413265
added model link into app
Browse files- README.md +526 -1
- markdown.py +1 -1
README.md
CHANGED
@@ -10,4 +10,529 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
# ERA-SESSION13 YoloV3 with Pytorch Lightning & Gradio
|
14 |
+
|
15 |
+
HF Link: https://huggingface.co/spaces/RaviNaik/ERA-SESSION13
|
16 |
+
|
17 |
+
### Achieved:
|
18 |
+
1. **Training Loss: 3.680**
|
19 |
+
2. **Validation Loss: 4.940**
|
20 |
+
3. **Class accuracy: 81.601883%**
|
21 |
+
4. **No obj accuracy: 97.991463%**
|
22 |
+
5. **Obj accuracy: 75.976616%**
|
23 |
+
6. **MAP: 0.4366795**
|
24 |
+
|
25 |
+
### Tasks:
|
26 |
+
1. :heavy_check_mark: Move the code to PytorchLightning
|
27 |
+
2. :heavy_check_mark: Train the model to reach such that all of these are true:
|
28 |
+
- Class accuracy is more than 75%
|
29 |
+
- No Obj accuracy of more than 95%
|
30 |
+
- Object Accuracy of more than 70% (assuming you had to reduce the kernel numbers, else 80/98/78)
|
31 |
+
- Ideally trained till 40 epochs
|
32 |
+
3. :heavy_check_mark: Add these training features:
|
33 |
+
- Add multi-resolution training - the code shared trains only on one resolution 416
|
34 |
+
- Add Implement Mosaic Augmentation only 75% of the times
|
35 |
+
- Train on float16
|
36 |
+
- GradCam must be implemented.
|
37 |
+
4. :heavy_check_mark: Things that are allowed due to HW constraints:
|
38 |
+
- Change of batch size
|
39 |
+
- Change of resolution
|
40 |
+
- Change of OCP parameters
|
41 |
+
5. :heavy_check_mark: Once done:
|
42 |
+
- Move the app to HuggingFace Spaces
|
43 |
+
- Allow custom upload of images
|
44 |
+
- Share some samples from the existing dataset
|
45 |
+
- Show the GradCAM output for the image that the user uploads as well as for the samples.
|
46 |
+
6. :heavy_check_mark: Mention things like:
|
47 |
+
- classes that your model support
|
48 |
+
- link to the actual model
|
49 |
+
7. :heavy_check_mark: Assignment:
|
50 |
+
- Share HuggingFace App Link
|
51 |
+
- Share LightningCode Link on Github
|
52 |
+
- Share notebook link (with logs) on GitHub
|
53 |
+
|
54 |
+
### Results
|
55 |
+
![image](https://github.com/RaviNaik/ERA-SESSION13/blob/main/yolo_results.png)
|
56 |
+
|
57 |
+
### Gradio App
|
58 |
+
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/95335687-e717-4467-bcb1-227a79dd5c3f)
|
59 |
+
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/3ab67d32-38e6-436a-86d4-b76b5bd52a77)
|
60 |
+
|
61 |
+
### Model Summary
|
62 |
+
```python
|
63 |
+
| Name | Type | Params
|
64 |
+
-------------------------------------------------------------------
|
65 |
+
0 | loss_fn | YoloLoss | 0
|
66 |
+
1 | loss_fn.mse | MSELoss | 0
|
67 |
+
2 | loss_fn.bce | BCEWithLogitsLoss | 0
|
68 |
+
3 | loss_fn.entropy | CrossEntropyLoss | 0
|
69 |
+
4 | loss_fn.sigmoid | Sigmoid | 0
|
70 |
+
5 | layers | ModuleList | 61.6 M
|
71 |
+
6 | layers.0 | CNNBlock | 928
|
72 |
+
7 | layers.0.conv | Conv2d | 864
|
73 |
+
8 | layers.0.bn | BatchNorm2d | 64
|
74 |
+
9 | layers.0.leaky | LeakyReLU | 0
|
75 |
+
10 | layers.1 | CNNBlock | 18.6 K
|
76 |
+
11 | layers.1.conv | Conv2d | 18.4 K
|
77 |
+
12 | layers.1.bn | BatchNorm2d | 128
|
78 |
+
13 | layers.1.leaky | LeakyReLU | 0
|
79 |
+
14 | layers.2 | ResidualBlock | 20.7 K
|
80 |
+
15 | layers.2.layers | ModuleList | 20.7 K
|
81 |
+
16 | layers.2.layers.0 | Sequential | 20.7 K
|
82 |
+
17 | layers.2.layers.0.0 | CNNBlock | 2.1 K
|
83 |
+
18 | layers.2.layers.0.0.conv | Conv2d | 2.0 K
|
84 |
+
19 | layers.2.layers.0.0.bn | BatchNorm2d | 64
|
85 |
+
20 | layers.2.layers.0.0.leaky | LeakyReLU | 0
|
86 |
+
21 | layers.2.layers.0.1 | CNNBlock | 18.6 K
|
87 |
+
22 | layers.2.layers.0.1.conv | Conv2d | 18.4 K
|
88 |
+
23 | layers.2.layers.0.1.bn | BatchNorm2d | 128
|
89 |
+
24 | layers.2.layers.0.1.leaky | LeakyReLU | 0
|
90 |
+
25 | layers.3 | CNNBlock | 74.0 K
|
91 |
+
26 | layers.3.conv | Conv2d | 73.7 K
|
92 |
+
27 | layers.3.bn | BatchNorm2d | 256
|
93 |
+
28 | layers.3.leaky | LeakyReLU | 0
|
94 |
+
29 | layers.4 | ResidualBlock | 164 K
|
95 |
+
30 | layers.4.layers | ModuleList | 164 K
|
96 |
+
31 | layers.4.layers.0 | Sequential | 82.3 K
|
97 |
+
32 | layers.4.layers.0.0 | CNNBlock | 8.3 K
|
98 |
+
33 | layers.4.layers.0.0.conv | Conv2d | 8.2 K
|
99 |
+
34 | layers.4.layers.0.0.bn | BatchNorm2d | 128
|
100 |
+
35 | layers.4.layers.0.0.leaky | LeakyReLU | 0
|
101 |
+
36 | layers.4.layers.0.1 | CNNBlock | 74.0 K
|
102 |
+
37 | layers.4.layers.0.1.conv | Conv2d | 73.7 K
|
103 |
+
38 | layers.4.layers.0.1.bn | BatchNorm2d | 256
|
104 |
+
39 | layers.4.layers.0.1.leaky | LeakyReLU | 0
|
105 |
+
40 | layers.4.layers.1 | Sequential | 82.3 K
|
106 |
+
41 | layers.4.layers.1.0 | CNNBlock | 8.3 K
|
107 |
+
42 | layers.4.layers.1.0.conv | Conv2d | 8.2 K
|
108 |
+
43 | layers.4.layers.1.0.bn | BatchNorm2d | 128
|
109 |
+
44 | layers.4.layers.1.0.leaky | LeakyReLU | 0
|
110 |
+
45 | layers.4.layers.1.1 | CNNBlock | 74.0 K
|
111 |
+
46 | layers.4.layers.1.1.conv | Conv2d | 73.7 K
|
112 |
+
47 | layers.4.layers.1.1.bn | BatchNorm2d | 256
|
113 |
+
48 | layers.4.layers.1.1.leaky | LeakyReLU | 0
|
114 |
+
49 | layers.5 | CNNBlock | 295 K
|
115 |
+
50 | layers.5.conv | Conv2d | 294 K
|
116 |
+
51 | layers.5.bn | BatchNorm2d | 512
|
117 |
+
52 | layers.5.leaky | LeakyReLU | 0
|
118 |
+
53 | layers.6 | ResidualBlock | 2.6 M
|
119 |
+
54 | layers.6.layers | ModuleList | 2.6 M
|
120 |
+
55 | layers.6.layers.0 | Sequential | 328 K
|
121 |
+
56 | layers.6.layers.0.0 | CNNBlock | 33.0 K
|
122 |
+
57 | layers.6.layers.0.0.conv | Conv2d | 32.8 K
|
123 |
+
58 | layers.6.layers.0.0.bn | BatchNorm2d | 256
|
124 |
+
59 | layers.6.layers.0.0.leaky | LeakyReLU | 0
|
125 |
+
60 | layers.6.layers.0.1 | CNNBlock | 295 K
|
126 |
+
61 | layers.6.layers.0.1.conv | Conv2d | 294 K
|
127 |
+
62 | layers.6.layers.0.1.bn | BatchNorm2d | 512
|
128 |
+
63 | layers.6.layers.0.1.leaky | LeakyReLU | 0
|
129 |
+
64 | layers.6.layers.1 | Sequential | 328 K
|
130 |
+
65 | layers.6.layers.1.0 | CNNBlock | 33.0 K
|
131 |
+
66 | layers.6.layers.1.0.conv | Conv2d | 32.8 K
|
132 |
+
67 | layers.6.layers.1.0.bn | BatchNorm2d | 256
|
133 |
+
68 | layers.6.layers.1.0.leaky | LeakyReLU | 0
|
134 |
+
69 | layers.6.layers.1.1 | CNNBlock | 295 K
|
135 |
+
70 | layers.6.layers.1.1.conv | Conv2d | 294 K
|
136 |
+
71 | layers.6.layers.1.1.bn | BatchNorm2d | 512
|
137 |
+
72 | layers.6.layers.1.1.leaky | LeakyReLU | 0
|
138 |
+
73 | layers.6.layers.2 | Sequential | 328 K
|
139 |
+
74 | layers.6.layers.2.0 | CNNBlock | 33.0 K
|
140 |
+
75 | layers.6.layers.2.0.conv | Conv2d | 32.8 K
|
141 |
+
76 | layers.6.layers.2.0.bn | BatchNorm2d | 256
|
142 |
+
77 | layers.6.layers.2.0.leaky | LeakyReLU | 0
|
143 |
+
78 | layers.6.layers.2.1 | CNNBlock | 295 K
|
144 |
+
79 | layers.6.layers.2.1.conv | Conv2d | 294 K
|
145 |
+
80 | layers.6.layers.2.1.bn | BatchNorm2d | 512
|
146 |
+
81 | layers.6.layers.2.1.leaky | LeakyReLU | 0
|
147 |
+
82 | layers.6.layers.3 | Sequential | 328 K
|
148 |
+
83 | layers.6.layers.3.0 | CNNBlock | 33.0 K
|
149 |
+
84 | layers.6.layers.3.0.conv | Conv2d | 32.8 K
|
150 |
+
85 | layers.6.layers.3.0.bn | BatchNorm2d | 256
|
151 |
+
86 | layers.6.layers.3.0.leaky | LeakyReLU | 0
|
152 |
+
87 | layers.6.layers.3.1 | CNNBlock | 295 K
|
153 |
+
88 | layers.6.layers.3.1.conv | Conv2d | 294 K
|
154 |
+
89 | layers.6.layers.3.1.bn | BatchNorm2d | 512
|
155 |
+
90 | layers.6.layers.3.1.leaky | LeakyReLU | 0
|
156 |
+
91 | layers.6.layers.4 | Sequential | 328 K
|
157 |
+
92 | layers.6.layers.4.0 | CNNBlock | 33.0 K
|
158 |
+
93 | layers.6.layers.4.0.conv | Conv2d | 32.8 K
|
159 |
+
94 | layers.6.layers.4.0.bn | BatchNorm2d | 256
|
160 |
+
95 | layers.6.layers.4.0.leaky | LeakyReLU | 0
|
161 |
+
96 | layers.6.layers.4.1 | CNNBlock | 295 K
|
162 |
+
97 | layers.6.layers.4.1.conv | Conv2d | 294 K
|
163 |
+
98 | layers.6.layers.4.1.bn | BatchNorm2d | 512
|
164 |
+
99 | layers.6.layers.4.1.leaky | LeakyReLU | 0
|
165 |
+
100 | layers.6.layers.5 | Sequential | 328 K
|
166 |
+
101 | layers.6.layers.5.0 | CNNBlock | 33.0 K
|
167 |
+
102 | layers.6.layers.5.0.conv | Conv2d | 32.8 K
|
168 |
+
103 | layers.6.layers.5.0.bn | BatchNorm2d | 256
|
169 |
+
104 | layers.6.layers.5.0.leaky | LeakyReLU | 0
|
170 |
+
105 | layers.6.layers.5.1 | CNNBlock | 295 K
|
171 |
+
106 | layers.6.layers.5.1.conv | Conv2d | 294 K
|
172 |
+
107 | layers.6.layers.5.1.bn | BatchNorm2d | 512
|
173 |
+
108 | layers.6.layers.5.1.leaky | LeakyReLU | 0
|
174 |
+
109 | layers.6.layers.6 | Sequential | 328 K
|
175 |
+
110 | layers.6.layers.6.0 | CNNBlock | 33.0 K
|
176 |
+
111 | layers.6.layers.6.0.conv | Conv2d | 32.8 K
|
177 |
+
112 | layers.6.layers.6.0.bn | BatchNorm2d | 256
|
178 |
+
113 | layers.6.layers.6.0.leaky | LeakyReLU | 0
|
179 |
+
114 | layers.6.layers.6.1 | CNNBlock | 295 K
|
180 |
+
115 | layers.6.layers.6.1.conv | Conv2d | 294 K
|
181 |
+
116 | layers.6.layers.6.1.bn | BatchNorm2d | 512
|
182 |
+
117 | layers.6.layers.6.1.leaky | LeakyReLU | 0
|
183 |
+
118 | layers.6.layers.7 | Sequential | 328 K
|
184 |
+
119 | layers.6.layers.7.0 | CNNBlock | 33.0 K
|
185 |
+
120 | layers.6.layers.7.0.conv | Conv2d | 32.8 K
|
186 |
+
121 | layers.6.layers.7.0.bn | BatchNorm2d | 256
|
187 |
+
122 | layers.6.layers.7.0.leaky | LeakyReLU | 0
|
188 |
+
123 | layers.6.layers.7.1 | CNNBlock | 295 K
|
189 |
+
124 | layers.6.layers.7.1.conv | Conv2d | 294 K
|
190 |
+
125 | layers.6.layers.7.1.bn | BatchNorm2d | 512
|
191 |
+
126 | layers.6.layers.7.1.leaky | LeakyReLU | 0
|
192 |
+
127 | layers.7 | CNNBlock | 1.2 M
|
193 |
+
128 | layers.7.conv | Conv2d | 1.2 M
|
194 |
+
129 | layers.7.bn | BatchNorm2d | 1.0 K
|
195 |
+
130 | layers.7.leaky | LeakyReLU | 0
|
196 |
+
131 | layers.8 | ResidualBlock | 10.5 M
|
197 |
+
132 | layers.8.layers | ModuleList | 10.5 M
|
198 |
+
133 | layers.8.layers.0 | Sequential | 1.3 M
|
199 |
+
134 | layers.8.layers.0.0 | CNNBlock | 131 K
|
200 |
+
135 | layers.8.layers.0.0.conv | Conv2d | 131 K
|
201 |
+
136 | layers.8.layers.0.0.bn | BatchNorm2d | 512
|
202 |
+
137 | layers.8.layers.0.0.leaky | LeakyReLU | 0
|
203 |
+
138 | layers.8.layers.0.1 | CNNBlock | 1.2 M
|
204 |
+
139 | layers.8.layers.0.1.conv | Conv2d | 1.2 M
|
205 |
+
140 | layers.8.layers.0.1.bn | BatchNorm2d | 1.0 K
|
206 |
+
141 | layers.8.layers.0.1.leaky | LeakyReLU | 0
|
207 |
+
142 | layers.8.layers.1 | Sequential | 1.3 M
|
208 |
+
143 | layers.8.layers.1.0 | CNNBlock | 131 K
|
209 |
+
144 | layers.8.layers.1.0.conv | Conv2d | 131 K
|
210 |
+
145 | layers.8.layers.1.0.bn | BatchNorm2d | 512
|
211 |
+
146 | layers.8.layers.1.0.leaky | LeakyReLU | 0
|
212 |
+
147 | layers.8.layers.1.1 | CNNBlock | 1.2 M
|
213 |
+
148 | layers.8.layers.1.1.conv | Conv2d | 1.2 M
|
214 |
+
149 | layers.8.layers.1.1.bn | BatchNorm2d | 1.0 K
|
215 |
+
150 | layers.8.layers.1.1.leaky | LeakyReLU | 0
|
216 |
+
151 | layers.8.layers.2 | Sequential | 1.3 M
|
217 |
+
152 | layers.8.layers.2.0 | CNNBlock | 131 K
|
218 |
+
153 | layers.8.layers.2.0.conv | Conv2d | 131 K
|
219 |
+
154 | layers.8.layers.2.0.bn | BatchNorm2d | 512
|
220 |
+
155 | layers.8.layers.2.0.leaky | LeakyReLU | 0
|
221 |
+
156 | layers.8.layers.2.1 | CNNBlock | 1.2 M
|
222 |
+
157 | layers.8.layers.2.1.conv | Conv2d | 1.2 M
|
223 |
+
158 | layers.8.layers.2.1.bn | BatchNorm2d | 1.0 K
|
224 |
+
159 | layers.8.layers.2.1.leaky | LeakyReLU | 0
|
225 |
+
160 | layers.8.layers.3 | Sequential | 1.3 M
|
226 |
+
161 | layers.8.layers.3.0 | CNNBlock | 131 K
|
227 |
+
162 | layers.8.layers.3.0.conv | Conv2d | 131 K
|
228 |
+
163 | layers.8.layers.3.0.bn | BatchNorm2d | 512
|
229 |
+
164 | layers.8.layers.3.0.leaky | LeakyReLU | 0
|
230 |
+
165 | layers.8.layers.3.1 | CNNBlock | 1.2 M
|
231 |
+
166 | layers.8.layers.3.1.conv | Conv2d | 1.2 M
|
232 |
+
167 | layers.8.layers.3.1.bn | BatchNorm2d | 1.0 K
|
233 |
+
168 | layers.8.layers.3.1.leaky | LeakyReLU | 0
|
234 |
+
169 | layers.8.layers.4 | Sequential | 1.3 M
|
235 |
+
170 | layers.8.layers.4.0 | CNNBlock | 131 K
|
236 |
+
171 | layers.8.layers.4.0.conv | Conv2d | 131 K
|
237 |
+
172 | layers.8.layers.4.0.bn | BatchNorm2d | 512
|
238 |
+
173 | layers.8.layers.4.0.leaky | LeakyReLU | 0
|
239 |
+
174 | layers.8.layers.4.1 | CNNBlock | 1.2 M
|
240 |
+
175 | layers.8.layers.4.1.conv | Conv2d | 1.2 M
|
241 |
+
176 | layers.8.layers.4.1.bn | BatchNorm2d | 1.0 K
|
242 |
+
177 | layers.8.layers.4.1.leaky | LeakyReLU | 0
|
243 |
+
178 | layers.8.layers.5 | Sequential | 1.3 M
|
244 |
+
179 | layers.8.layers.5.0 | CNNBlock | 131 K
|
245 |
+
180 | layers.8.layers.5.0.conv | Conv2d | 131 K
|
246 |
+
181 | layers.8.layers.5.0.bn | BatchNorm2d | 512
|
247 |
+
182 | layers.8.layers.5.0.leaky | LeakyReLU | 0
|
248 |
+
183 | layers.8.layers.5.1 | CNNBlock | 1.2 M
|
249 |
+
184 | layers.8.layers.5.1.conv | Conv2d | 1.2 M
|
250 |
+
185 | layers.8.layers.5.1.bn | BatchNorm2d | 1.0 K
|
251 |
+
186 | layers.8.layers.5.1.leaky | LeakyReLU | 0
|
252 |
+
187 | layers.8.layers.6 | Sequential | 1.3 M
|
253 |
+
188 | layers.8.layers.6.0 | CNNBlock | 131 K
|
254 |
+
189 | layers.8.layers.6.0.conv | Conv2d | 131 K
|
255 |
+
190 | layers.8.layers.6.0.bn | BatchNorm2d | 512
|
256 |
+
191 | layers.8.layers.6.0.leaky | LeakyReLU | 0
|
257 |
+
192 | layers.8.layers.6.1 | CNNBlock | 1.2 M
|
258 |
+
193 | layers.8.layers.6.1.conv | Conv2d | 1.2 M
|
259 |
+
194 | layers.8.layers.6.1.bn | BatchNorm2d | 1.0 K
|
260 |
+
195 | layers.8.layers.6.1.leaky | LeakyReLU | 0
|
261 |
+
196 | layers.8.layers.7 | Sequential | 1.3 M
|
262 |
+
197 | layers.8.layers.7.0 | CNNBlock | 131 K
|
263 |
+
198 | layers.8.layers.7.0.conv | Conv2d | 131 K
|
264 |
+
199 | layers.8.layers.7.0.bn | BatchNorm2d | 512
|
265 |
+
200 | layers.8.layers.7.0.leaky | LeakyReLU | 0
|
266 |
+
201 | layers.8.layers.7.1 | CNNBlock | 1.2 M
|
267 |
+
202 | layers.8.layers.7.1.conv | Conv2d | 1.2 M
|
268 |
+
203 | layers.8.layers.7.1.bn | BatchNorm2d | 1.0 K
|
269 |
+
204 | layers.8.layers.7.1.leaky | LeakyReLU | 0
|
270 |
+
205 | layers.9 | CNNBlock | 4.7 M
|
271 |
+
206 | layers.9.conv | Conv2d | 4.7 M
|
272 |
+
207 | layers.9.bn | BatchNorm2d | 2.0 K
|
273 |
+
208 | layers.9.leaky | LeakyReLU | 0
|
274 |
+
209 | layers.10 | ResidualBlock | 21.0 M
|
275 |
+
210 | layers.10.layers | ModuleList | 21.0 M
|
276 |
+
211 | layers.10.layers.0 | Sequential | 5.2 M
|
277 |
+
212 | layers.10.layers.0.0 | CNNBlock | 525 K
|
278 |
+
213 | layers.10.layers.0.0.conv | Conv2d | 524 K
|
279 |
+
214 | layers.10.layers.0.0.bn | BatchNorm2d | 1.0 K
|
280 |
+
215 | layers.10.layers.0.0.leaky | LeakyReLU | 0
|
281 |
+
216 | layers.10.layers.0.1 | CNNBlock | 4.7 M
|
282 |
+
217 | layers.10.layers.0.1.conv | Conv2d | 4.7 M
|
283 |
+
218 | layers.10.layers.0.1.bn | BatchNorm2d | 2.0 K
|
284 |
+
219 | layers.10.layers.0.1.leaky | LeakyReLU | 0
|
285 |
+
220 | layers.10.layers.1 | Sequential | 5.2 M
|
286 |
+
221 | layers.10.layers.1.0 | CNNBlock | 525 K
|
287 |
+
222 | layers.10.layers.1.0.conv | Conv2d | 524 K
|
288 |
+
223 | layers.10.layers.1.0.bn | BatchNorm2d | 1.0 K
|
289 |
+
224 | layers.10.layers.1.0.leaky | LeakyReLU | 0
|
290 |
+
225 | layers.10.layers.1.1 | CNNBlock | 4.7 M
|
291 |
+
226 | layers.10.layers.1.1.conv | Conv2d | 4.7 M
|
292 |
+
227 | layers.10.layers.1.1.bn | BatchNorm2d | 2.0 K
|
293 |
+
228 | layers.10.layers.1.1.leaky | LeakyReLU | 0
|
294 |
+
229 | layers.10.layers.2 | Sequential | 5.2 M
|
295 |
+
230 | layers.10.layers.2.0 | CNNBlock | 525 K
|
296 |
+
231 | layers.10.layers.2.0.conv | Conv2d | 524 K
|
297 |
+
232 | layers.10.layers.2.0.bn | BatchNorm2d | 1.0 K
|
298 |
+
233 | layers.10.layers.2.0.leaky | LeakyReLU | 0
|
299 |
+
234 | layers.10.layers.2.1 | CNNBlock | 4.7 M
|
300 |
+
235 | layers.10.layers.2.1.conv | Conv2d | 4.7 M
|
301 |
+
236 | layers.10.layers.2.1.bn | BatchNorm2d | 2.0 K
|
302 |
+
237 | layers.10.layers.2.1.leaky | LeakyReLU | 0
|
303 |
+
238 | layers.10.layers.3 | Sequential | 5.2 M
|
304 |
+
239 | layers.10.layers.3.0 | CNNBlock | 525 K
|
305 |
+
240 | layers.10.layers.3.0.conv | Conv2d | 524 K
|
306 |
+
241 | layers.10.layers.3.0.bn | BatchNorm2d | 1.0 K
|
307 |
+
242 | layers.10.layers.3.0.leaky | LeakyReLU | 0
|
308 |
+
243 | layers.10.layers.3.1 | CNNBlock | 4.7 M
|
309 |
+
244 | layers.10.layers.3.1.conv | Conv2d | 4.7 M
|
310 |
+
245 | layers.10.layers.3.1.bn | BatchNorm2d | 2.0 K
|
311 |
+
246 | layers.10.layers.3.1.leaky | LeakyReLU | 0
|
312 |
+
247 | layers.11 | CNNBlock | 525 K
|
313 |
+
248 | layers.11.conv | Conv2d | 524 K
|
314 |
+
249 | layers.11.bn | BatchNorm2d | 1.0 K
|
315 |
+
250 | layers.11.leaky | LeakyReLU | 0
|
316 |
+
251 | layers.12 | CNNBlock | 4.7 M
|
317 |
+
252 | layers.12.conv | Conv2d | 4.7 M
|
318 |
+
253 | layers.12.bn | BatchNorm2d | 2.0 K
|
319 |
+
254 | layers.12.leaky | LeakyReLU | 0
|
320 |
+
255 | layers.13 | ResidualBlock | 5.2 M
|
321 |
+
256 | layers.13.layers | ModuleList | 5.2 M
|
322 |
+
257 | layers.13.layers.0 | Sequential | 5.2 M
|
323 |
+
258 | layers.13.layers.0.0 | CNNBlock | 525 K
|
324 |
+
259 | layers.13.layers.0.0.conv | Conv2d | 524 K
|
325 |
+
260 | layers.13.layers.0.0.bn | BatchNorm2d | 1.0 K
|
326 |
+
261 | layers.13.layers.0.0.leaky | LeakyReLU | 0
|
327 |
+
262 | layers.13.layers.0.1 | CNNBlock | 4.7 M
|
328 |
+
263 | layers.13.layers.0.1.conv | Conv2d | 4.7 M
|
329 |
+
264 | layers.13.layers.0.1.bn | BatchNorm2d | 2.0 K
|
330 |
+
265 | layers.13.layers.0.1.leaky | LeakyReLU | 0
|
331 |
+
266 | layers.14 | CNNBlock | 525 K
|
332 |
+
267 | layers.14.conv | Conv2d | 524 K
|
333 |
+
268 | layers.14.bn | BatchNorm2d | 1.0 K
|
334 |
+
269 | layers.14.leaky | LeakyReLU | 0
|
335 |
+
270 | layers.15 | ScalePrediction | 4.8 M
|
336 |
+
271 | layers.15.pred | Sequential | 4.8 M
|
337 |
+
272 | layers.15.pred.0 | CNNBlock | 4.7 M
|
338 |
+
273 | layers.15.pred.0.conv | Conv2d | 4.7 M
|
339 |
+
274 | layers.15.pred.0.bn | BatchNorm2d | 2.0 K
|
340 |
+
275 | layers.15.pred.0.leaky | LeakyReLU | 0
|
341 |
+
276 | layers.15.pred.1 | CNNBlock | 77.0 K
|
342 |
+
277 | layers.15.pred.1.conv | Conv2d | 76.9 K
|
343 |
+
278 | layers.15.pred.1.bn | BatchNorm2d | 150
|
344 |
+
279 | layers.15.pred.1.leaky | LeakyReLU | 0
|
345 |
+
280 | layers.16 | CNNBlock | 131 K
|
346 |
+
281 | layers.16.conv | Conv2d | 131 K
|
347 |
+
282 | layers.16.bn | BatchNorm2d | 512
|
348 |
+
283 | layers.16.leaky | LeakyReLU | 0
|
349 |
+
284 | layers.17 | Upsample | 0
|
350 |
+
285 | layers.18 | CNNBlock | 197 K
|
351 |
+
286 | layers.18.conv | Conv2d | 196 K
|
352 |
+
287 | layers.18.bn | BatchNorm2d | 512
|
353 |
+
288 | layers.18.leaky | LeakyReLU | 0
|
354 |
+
289 | layers.19 | CNNBlock | 1.2 M
|
355 |
+
290 | layers.19.conv | Conv2d | 1.2 M
|
356 |
+
291 | layers.19.bn | BatchNorm2d | 1.0 K
|
357 |
+
292 | layers.19.leaky | LeakyReLU | 0
|
358 |
+
293 | layers.20 | ResidualBlock | 1.3 M
|
359 |
+
294 | layers.20.layers | ModuleList | 1.3 M
|
360 |
+
295 | layers.20.layers.0 | Sequential | 1.3 M
|
361 |
+
296 | layers.20.layers.0.0 | CNNBlock | 131 K
|
362 |
+
297 | layers.20.layers.0.0.conv | Conv2d | 131 K
|
363 |
+
298 | layers.20.layers.0.0.bn | BatchNorm2d | 512
|
364 |
+
299 | layers.20.layers.0.0.leaky | LeakyReLU | 0
|
365 |
+
300 | layers.20.layers.0.1 | CNNBlock | 1.2 M
|
366 |
+
301 | layers.20.layers.0.1.conv | Conv2d | 1.2 M
|
367 |
+
302 | layers.20.layers.0.1.bn | BatchNorm2d | 1.0 K
|
368 |
+
303 | layers.20.layers.0.1.leaky | LeakyReLU | 0
|
369 |
+
304 | layers.21 | CNNBlock | 131 K
|
370 |
+
305 | layers.21.conv | Conv2d | 131 K
|
371 |
+
306 | layers.21.bn | BatchNorm2d | 512
|
372 |
+
307 | layers.21.leaky | LeakyReLU | 0
|
373 |
+
308 | layers.22 | ScalePrediction | 1.2 M
|
374 |
+
309 | layers.22.pred | Sequential | 1.2 M
|
375 |
+
310 | layers.22.pred.0 | CNNBlock | 1.2 M
|
376 |
+
311 | layers.22.pred.0.conv | Conv2d | 1.2 M
|
377 |
+
312 | layers.22.pred.0.bn | BatchNorm2d | 1.0 K
|
378 |
+
313 | layers.22.pred.0.leaky | LeakyReLU | 0
|
379 |
+
314 | layers.22.pred.1 | CNNBlock | 38.6 K
|
380 |
+
315 | layers.22.pred.1.conv | Conv2d | 38.5 K
|
381 |
+
316 | layers.22.pred.1.bn | BatchNorm2d | 150
|
382 |
+
317 | layers.22.pred.1.leaky | LeakyReLU | 0
|
383 |
+
318 | layers.23 | CNNBlock | 33.0 K
|
384 |
+
319 | layers.23.conv | Conv2d | 32.8 K
|
385 |
+
320 | layers.23.bn | BatchNorm2d | 256
|
386 |
+
321 | layers.23.leaky | LeakyReLU | 0
|
387 |
+
322 | layers.24 | Upsample | 0
|
388 |
+
323 | layers.25 | CNNBlock | 49.4 K
|
389 |
+
324 | layers.25.conv | Conv2d | 49.2 K
|
390 |
+
325 | layers.25.bn | BatchNorm2d | 256
|
391 |
+
326 | layers.25.leaky | LeakyReLU | 0
|
392 |
+
327 | layers.26 | CNNBlock | 295 K
|
393 |
+
328 | layers.26.conv | Conv2d | 294 K
|
394 |
+
329 | layers.26.bn | BatchNorm2d | 512
|
395 |
+
330 | layers.26.leaky | LeakyReLU | 0
|
396 |
+
331 | layers.27 | ResidualBlock | 328 K
|
397 |
+
332 | layers.27.layers | ModuleList | 328 K
|
398 |
+
333 | layers.27.layers.0 | Sequential | 328 K
|
399 |
+
334 | layers.27.layers.0.0 | CNNBlock | 33.0 K
|
400 |
+
335 | layers.27.layers.0.0.conv | Conv2d | 32.8 K
|
401 |
+
336 | layers.27.layers.0.0.bn | BatchNorm2d | 256
|
402 |
+
337 | layers.27.layers.0.0.leaky | LeakyReLU | 0
|
403 |
+
338 | layers.27.layers.0.1 | CNNBlock | 295 K
|
404 |
+
339 | layers.27.layers.0.1.conv | Conv2d | 294 K
|
405 |
+
340 | layers.27.layers.0.1.bn | BatchNorm2d | 512
|
406 |
+
341 | layers.27.layers.0.1.leaky | LeakyReLU | 0
|
407 |
+
342 | layers.28 | CNNBlock | 33.0 K
|
408 |
+
343 | layers.28.conv | Conv2d | 32.8 K
|
409 |
+
344 | layers.28.bn | BatchNorm2d | 256
|
410 |
+
345 | layers.28.leaky | LeakyReLU | 0
|
411 |
+
346 | layers.29 | ScalePrediction | 314 K
|
412 |
+
347 | layers.29.pred | Sequential | 314 K
|
413 |
+
348 | layers.29.pred.0 | CNNBlock | 295 K
|
414 |
+
349 | layers.29.pred.0.conv | Conv2d | 294 K
|
415 |
+
350 | layers.29.pred.0.bn | BatchNorm2d | 512
|
416 |
+
351 | layers.29.pred.0.leaky | LeakyReLU | 0
|
417 |
+
352 | layers.29.pred.1 | CNNBlock | 19.4 K
|
418 |
+
353 | layers.29.pred.1.conv | Conv2d | 19.3 K
|
419 |
+
354 | layers.29.pred.1.bn | BatchNorm2d | 150
|
420 |
+
355 | layers.29.pred.1.leaky | LeakyReLU | 0
|
421 |
+
-------------------------------------------------------------------
|
422 |
+
61.6 M Trainable params
|
423 |
+
0 Non-trainable params
|
424 |
+
61.6 M Total params
|
425 |
+
246.506 Total estimated model params size (MB)
|
426 |
+
```
|
427 |
+
|
428 |
+
### LR Finder
|
429 |
+
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/a6d64f13-a7b7-4e17-abfc-3ec86e84b710)
|
430 |
+
|
431 |
+
### Loss & Accuracy
|
432 |
+
**Training & Validation Loss:**
|
433 |
+
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/9391157e-a889-480d-b233-b72e86745245)
|
434 |
+
|
435 |
+
**Testing Accuracy:**
|
436 |
+
```python
|
437 |
+
0%| | 0/39 [00:00<?, ?it/s]
|
438 |
+
3%|β | 1/39 [00:05<03:24, 5.37s/it]
|
439 |
+
5%|β | 2/39 [00:11<03:32, 5.75s/it]
|
440 |
+
8%|β | 3/39 [00:16<03:14, 5.41s/it]
|
441 |
+
10%|β | 4/39 [00:21<03:06, 5.33s/it]
|
442 |
+
13%|ββ | 5/39 [00:26<02:55, 5.17s/it]
|
443 |
+
15%|ββ | 6/39 [00:31<02:50, 5.16s/it]
|
444 |
+
18%|ββ | 7/39 [00:36<02:43, 5.11s/it]
|
445 |
+
21%|ββ | 8/39 [00:42<02:48, 5.43s/it]
|
446 |
+
23%|βββ | 9/39 [00:48<02:44, 5.47s/it]
|
447 |
+
26%|βββ | 10/39 [00:54<02:41, 5.58s/it]
|
448 |
+
28%|βββ | 11/39 [00:59<02:36, 5.59s/it]
|
449 |
+
31%|βββ | 12/39 [01:05<02:35, 5.77s/it]
|
450 |
+
33%|ββββ | 13/39 [01:11<02:28, 5.70s/it]
|
451 |
+
36%|ββββ | 14/39 [01:16<02:15, 5.42s/it]
|
452 |
+
38%|ββββ | 15/39 [01:21<02:07, 5.30s/it]
|
453 |
+
41%|ββββ | 16/39 [01:26<02:02, 5.34s/it]
|
454 |
+
44%|βββββ | 17/39 [01:31<01:54, 5.23s/it]
|
455 |
+
46%|βββββ | 18/39 [01:36<01:49, 5.22s/it]
|
456 |
+
49%|βββββ | 19/39 [01:42<01:43, 5.20s/it]
|
457 |
+
51%|ββββββ | 20/39 [01:46<01:33, 4.94s/it]
|
458 |
+
54%|ββββββ | 21/39 [01:50<01:23, 4.64s/it]
|
459 |
+
56%|ββββββ | 22/39 [01:54<01:14, 4.41s/it]
|
460 |
+
59%|ββββββ | 23/39 [01:57<01:03, 3.96s/it]
|
461 |
+
62%|βββββββ | 24/39 [02:00<00:54, 3.66s/it]
|
462 |
+
64%|βββββββ | 25/39 [02:04<00:55, 3.94s/it]
|
463 |
+
67%|βββββββ | 26/39 [02:10<00:56, 4.38s/it]
|
464 |
+
69%|βββββββ | 27/39 [02:14<00:53, 4.47s/it]
|
465 |
+
72%|ββββββββ | 28/39 [02:20<00:52, 4.77s/it]
|
466 |
+
74%|ββββββββ | 29/39 [02:25<00:50, 5.04s/it]
|
467 |
+
77%|ββββββββ | 30/39 [02:31<00:47, 5.25s/it]
|
468 |
+
79%|ββββββββ | 31/39 [02:37<00:42, 5.36s/it]
|
469 |
+
82%|βββββββββ | 32/39 [02:42<00:38, 5.43s/it]
|
470 |
+
85%|βββββββββ | 33/39 [02:47<00:31, 5.24s/it]
|
471 |
+
87%|βββββββββ | 34/39 [02:53<00:26, 5.29s/it]
|
472 |
+
90%|βββββββββ | 35/39 [02:58<00:21, 5.32s/it]
|
473 |
+
92%|ββββββββββ| 36/39 [03:03<00:15, 5.23s/it]
|
474 |
+
95%|ββββββββββ| 37/39 [03:08<00:10, 5.26s/it]
|
475 |
+
97%|ββββββββββ| 38/39 [03:14<00:05, 5.32s/it]
|
476 |
+
100%|ββββββββββ| 39/39 [03:17<00:00, 5.07s/it]
|
477 |
+
Class accuracy is: 81.601883%
|
478 |
+
No obj accuracy is: 97.991463%
|
479 |
+
Obj accuracy is: 75.976616%
|
480 |
+
```
|
481 |
+
### MAP Calculations
|
482 |
+
```python
|
483 |
+
0%| | 0/39 [00:00<?, ?it/s]
|
484 |
+
3%|β | 1/39 [00:40<25:35, 40.40s/it]
|
485 |
+
5%|β | 2/39 [01:24<26:05, 42.31s/it]
|
486 |
+
8%|β | 3/39 [02:01<24:02, 40.07s/it]
|
487 |
+
10%|β | 4/39 [02:40<23:04, 39.57s/it]
|
488 |
+
13%|ββ | 5/39 [03:36<25:45, 45.46s/it]
|
489 |
+
15%|ββ | 6/39 [04:20<24:45, 45.00s/it]
|
490 |
+
18%|ββ | 7/39 [05:03<23:37, 44.29s/it]
|
491 |
+
21%|ββ | 8/39 [05:47<22:55, 44.36s/it]
|
492 |
+
23%|βββ | 9/39 [06:33<22:25, 44.84s/it]
|
493 |
+
26%|βββ | 10/39 [07:06<19:54, 41.20s/it]
|
494 |
+
28%|βββ | 11/39 [07:58<20:45, 44.49s/it]
|
495 |
+
31%|βββ | 12/39 [08:36<19:10, 42.60s/it]
|
496 |
+
33%|ββββ | 13/39 [09:20<18:33, 42.81s/it]
|
497 |
+
36%|ββββ | 14/39 [10:01<17:43, 42.53s/it]
|
498 |
+
38%|ββββ | 15/39 [10:42<16:49, 42.04s/it]
|
499 |
+
41%|ββββ | 16/39 [11:25<16:10, 42.18s/it]
|
500 |
+
44%|βββββ | 17/39 [12:12<16:02, 43.73s/it]
|
501 |
+
46%|βββββ | 18/39 [12:56<15:20, 43.83s/it]
|
502 |
+
49%|βββββ | 19/39 [13:36<14:12, 42.64s/it]
|
503 |
+
51%|ββββββ | 20/39 [14:20<13:37, 43.04s/it]
|
504 |
+
54%|ββββββ | 21/39 [14:58<12:27, 41.54s/it]
|
505 |
+
56%|ββββββ | 22/39 [15:43<12:01, 42.45s/it]
|
506 |
+
59%|ββββββ | 23/39 [16:29<11:35, 43.49s/it]
|
507 |
+
62%|βββββββ | 24/39 [17:13<10:55, 43.69s/it]
|
508 |
+
64%|βββββββ | 25/39 [18:02<10:34, 45.29s/it]
|
509 |
+
67%|βββββββ | 26/39 [18:41<09:25, 43.53s/it]
|
510 |
+
69%|βββββββ | 27/39 [19:26<08:45, 43.77s/it]
|
511 |
+
72%|ββββββββ | 28/39 [20:04<07:44, 42.22s/it]
|
512 |
+
74%|ββββββββ | 29/39 [20:45<06:56, 41.65s/it]
|
513 |
+
77%|ββββββββ | 30/39 [21:32<06:30, 43.44s/it]
|
514 |
+
79%|ββββββββ | 31/39 [22:16<05:47, 43.46s/it]
|
515 |
+
82%|βββββββββ | 32/39 [22:52<04:49, 41.32s/it]
|
516 |
+
85%|βββββββββ | 33/39 [23:36<04:13, 42.19s/it]
|
517 |
+
87%|βββββββββ | 34/39 [24:18<03:29, 41.99s/it]
|
518 |
+
90%|βββββββββ | 35/39 [25:00<02:48, 42.17s/it]
|
519 |
+
92%|ββββββββββ| 36/39 [25:46<02:09, 43.24s/it]
|
520 |
+
95%|ββββββββββ| 37/39 [26:29<01:26, 43.24s/it]
|
521 |
+
97%|ββββββββββ| 38/39 [27:18<00:44, 44.74s/it]
|
522 |
+
100%|ββββββββββ| 39/39 [27:46<00:00, 42.74s/it]
|
523 |
+
MAP: 0.43667954206466675
|
524 |
+
```
|
525 |
+
### Tensorboard Plots
|
526 |
+
**Training Loss vs Steps:** ![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/5cb753e0-377b-4d9f-a240-871270ed50db)
|
527 |
+
|
528 |
+
**Validation Loss vs Steps:**
|
529 |
+
(Info: Validation loss calculated every 10 epochs to save time, thats why the straight line)
|
530 |
+
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/7401c0aa-f7ff-4a5b-bab2-dbb5ebe0b400)
|
531 |
+
|
532 |
+
### GradCAM Representations
|
533 |
+
EigenCAM is used to generate CAM representation, since usal gradient based method wont work with detection models like Yolo, FRCNN etc.
|
534 |
+
![image](https://github.com/RaviNaik/ERA-SESSION13/assets/23289802/3e3917f1-c8d1-4c3f-a028-de1292575e0b)
|
535 |
+
|
536 |
+
|
537 |
+
|
538 |
+
|
markdown.py
CHANGED
@@ -11,7 +11,7 @@ Github Link: https://github.com/RaviNaik/ERA-SESSION13/tree/main
|
|
11 |
5. **Obj accuracy: 75.976616%**
|
12 |
6. **MAP: 0.4366795**
|
13 |
|
14 |
-
Model Link:
|
15 |
|
16 |
"""
|
17 |
|
|
|
11 |
5. **Obj accuracy: 75.976616%**
|
12 |
6. **MAP: 0.4366795**
|
13 |
|
14 |
+
Model Link: https://huggingface.co/spaces/RaviNaik/ERA-SESSION13/blob/main/model.ckpt
|
15 |
|
16 |
"""
|
17 |
|