Revo-Diffusion / app.py
Ravi21's picture
Update app.py
ce1acc2 verified
from diffusers import StableDiffusionPipeline
import gc
import gradio as gr
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to("cpu")
text_encoder = pipe.text_encoder
text_encoder.eval()
unet = pipe.unet
unet.eval()
vae = pipe.vae
vae.eval()
del pipe
gc.collect()
from pathlib import Path
import torch
import openvino as pv
text_encoder_path=Path("text_encoder.xml")
def cleanup_cache():
torch._C._jit_clear_class_registry()
torch.jit._recursive.concrete_type_store=torch.jit._recursive.ConcreteTypeStore()
torch.jit._state._clear_class_state()
def convert_encoder(text_encoder:torch.nn.Module,ir_path:Path):
"""
Convert Text Encoder mode.
Function accepts text encoder model, and prepares example inputs for conversion,
Parameters:
text_encoder (torch.nn.Module): text_encoder model from Stable Diffusion pipeline
ir_path (Path): File for storing model
Returns:
None
"""
input_ids=torch.ones((1,77),dtype=torch.long)
text_encoder.eval()
with torch.no_grad():
ov_model=pv.convert_model(text_encoder,example_input=input_ids,input=[(1,77),])
pv.save_model(ov_model,ir_path)
del ov_model
cleanup_cache()
print(f"Text Encoder successfully converted to TR and saved to {ir_path}")
if not text_encoder_path.exists():
convert_encoder(text_encoder,text_encoder_path)
else:
print(f"Text encoder will be loaded from {text_encoder_path}")
del text_encoder
gc.collect()
import numpy as np
unet_path=Path("unet.xml")
dtype_mapping={
torch.float32: pv.Type.f32,
torch.float64: pv.Type.f64
}
def convert_unet(unet:torch.nn.Module,ir_path:Path):
"""
Convert U-net model to IR format.
Function accepts unet model, prepares example inputs for conversion,
Parameters:
unet (StableDiffusionPipeline): unet from Stable Diffusion pipeline
ir_path (Path): File for storing model
Returns:
None
"""
encoder_hidden_state=torch.ones((2,77,768))
latents_shape=(2,4,512 // 8,512 // 8)
latents=torch.randn(latents_shape)
t=torch.from_numpy(np.array(1,dtype=float))
dummy_inputs=(latents,t,encoder_hidden_state)
input_info=[]
for input_tensor in dummy_inputs:
shape=pv.PartialShape(tuple(input_tensor.shape))
element_type=dtype_mapping[input_tensor.dtype]
input_info.append((shape,element_type))
unet.eval()
with torch.no_grad():
pv_model=pv.convert_model(unet,example_input=dummy_inputs,input=input_info)
pv.save_model(pv_model,ir_path)
del pv_model
cleanup_cache()
print(f"Unet successfully converted to IR and saved to {ir_path}")
if not unet_path.exists():
convert_unet(unet,unet_path)
gc.collect()
else:
print(f"unet will be loaded from {unet_path}")
del unet
gc.collect()
VAE_ENCODER_PATH = Path("vae_encoder.xml")
def convert_vae_encoder(vae: torch.nn.Module, ir_path: Path):
class VAEEncoder(torch.nn.Module):
def __init__(self, vae):
super().__init__()
self.vae = vae
def forward(self, image):
return self.vae.encode(x=image)["latent_dist"].sample()
vae_encoder = VAEEncoder(vae)
vae_encoder.eval()
image = torch.zeros((1, 3, 512, 512))
with torch.no_grad():
ov_model = pv.convert_model(vae_encoder, example_input=image, input=[((1,3,512,512),)])
pv.save_model(ov_model, ir_path)
del ov_model
cleanup_cache()
print(f'VAE encoder successfully converted to IR and saved to {ir_path}')
if not VAE_ENCODER_PATH.exists():
convert_vae_encoder(vae, VAE_ENCODER_PATH)
else:
print(f"VAE encoder will be loaded from {VAE_ENCODER_PATH}")
VAE_DECODER_PATH = Path('vae_decoder.xml')
def convert_vae_decoder(vae: torch.nn.Module, ir_path: Path):
class VAEDecoder(torch.nn.Module):
def __init__(self, vae):
super().__init__()
self.vae = vae
def forward(self, latents):
return self.vae.decode(latents)
vae_decoder = VAEDecoder(vae)
latents = torch.zeros((1, 4, 64, 64))
vae_decoder.eval()
with torch.no_grad():
ov_model = pv.convert_model(vae_decoder, example_input=latents, input=[((1,4,64,64),)])
pv.save_model(ov_model, ir_path)
del ov_model
cleanup_cache()
print(f'VAE decoder successfully converted to IR and saved to {ir_path}')
if not VAE_DECODER_PATH.exists():
convert_vae_decoder(vae, VAE_DECODER_PATH)
else:
print(f"VAE decoder will be loaded from {VAE_DECODER_PATH}")
del vae
gc.collect()
import inspect
from typing import List,Optional,Union,Dict
import PIL
import cv2
from transformers import CLIPTokenizer
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import DDIMScheduler,LMSDiscreteScheduler,PNDMScheduler
from openvino.runtime import Model
def scale_window(dst_width:int,dst_height:int,image_width:int,image_height:int):
im_scale=min(dst_height / image_height,dst_width / image_width)
return int(im_scale * image_width), int(im_scale * image_height)
def preprocess(image:PIL.Image.Image):
src_width,src_height=image.size
dst_width,dst_height=scale_window(512,512,src_width,src_height)
image=np.array(image.resize((dst_width,dst_height),resample=PIL.Image.Resampling.LANCZOS))[None,:]
pad_width=512-dst_width
pad_height=512-dst_height
pad=((0,0),(0,pad_height),(0,pad_width),(0,0))
image=np.pad(image,pad,mode="constant")
image=image.astype(np.float32) / 255.0
image=2.0* image - 1.0
image=image.transpose(0,3,1,2)
return image, {"padding":pad,"src_width":src_width,"src_height":src_height}
class OVStableDiffusionPipeline(DiffusionPipeline):
def __init__(
self,
vae_decoder: Model,
text_encoder: Model,
tokenizer: CLIPTokenizer,
unet: Model,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
vae_encoder: Model = None,
):
super().__init__()
self.scheduler = scheduler
self.vae_decoder = vae_decoder
self.vae_encoder = vae_encoder
self.text_encoder = text_encoder
self.unet = unet
self._text_encoder_output = text_encoder.output(0)
self._unet_output = unet.output(0)
self._vae_d_output = vae_decoder.output(0)
self._vae_e_output = vae_encoder.output(0) if vae_encoder is not None else None
self.height = 512
self.width = 512
self.tokenizer = tokenizer
def __call__(
self,
prompt: Union[str, List[str]],
image: PIL.Image.Image = None,
num_inference_steps: Optional[int] = 50,
negative_prompt: Union[str, List[str]] = None,
guidance_scale: Optional[float] = 7.5,
eta: Optional[float] = 0.0,
output_type: Optional[str] = "pil",
seed: Optional[int] = None,
strength: float = 1.0,
gif: Optional[bool] = False,
**kwargs,
):
if seed is not None:
np.random.seed(seed)
img_buffer = []
do_classifier_free_guidance = guidance_scale > 1.0
# get prompt text embeddings
text_embeddings = self._encode_prompt(prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt)
# set timesteps
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
latent_timestep = timesteps[:1]
# get the initial random noise unless the user supplied it
latents, meta = self.prepare_latents(image, latent_timestep)
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(self.progress_bar(timesteps)):
# expand the latents if you are doing classifier free guidance
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet([latent_model_input, t, text_embeddings])[self._unet_output]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy()
if gif:
image = self.vae_decoder(latents * (1 / 0.18215))[self._vae_d_output]
image = self.postprocess_image(image, meta, output_type)
img_buffer.extend(image)
# scale and decode the image latents with vae
image = self.vae_decoder(latents * (1 / 0.18215))[self._vae_d_output]
image = self.postprocess_image(image, meta, output_type)
return {"sample": image, 'iterations': img_buffer}
def _encode_prompt(self, prompt:Union[str, List[str]], num_images_per_prompt:int = 1, do_classifier_free_guidance:bool = True, negative_prompt:Union[str, List[str]] = None):
"""
Encodes the prompt into text encoder hidden states.
Parameters:
prompt (str or list(str)): prompt to be encoded
num_images_per_prompt (int): number of images that should be generated per prompt
do_classifier_free_guidance (bool): whether to use classifier free guidance or not
negative_prompt (str or list(str)): negative prompt to be encoded
Returns:
text_embeddings (np.ndarray): text encoder hidden states
"""
batch_size = len(prompt) if isinstance(prompt, list) else 1
# tokenize input prompts
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
text_embeddings = self.text_encoder(
text_input_ids)[self._text_encoder_output]
# duplicate text embeddings for each generation per prompt
if num_images_per_prompt != 1:
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = np.tile(
text_embeddings, (1, num_images_per_prompt, 1))
text_embeddings = np.reshape(
text_embeddings, (bs_embed * num_images_per_prompt, seq_len, -1))
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
max_length = text_input_ids.shape[-1]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
else:
uncond_tokens = negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="np",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids)[self._text_encoder_output]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = np.tile(uncond_embeddings, (1, num_images_per_prompt, 1))
uncond_embeddings = np.reshape(uncond_embeddings, (batch_size * num_images_per_prompt, seq_len, -1))
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
return text_embeddings
def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None):
"""
Function for getting initial latents for starting generation
Parameters:
image (PIL.Image.Image, *optional*, None):
Input image for generation, if not provided randon noise will be used as starting point
latent_timestep (torch.Tensor, *optional*, None):
Predicted by scheduler initial step for image generation, required for latent image mixing with nosie
Returns:
latents (np.ndarray):
Image encoded in latent space
"""
latents_shape = (1, 4, self.height // 8, self.width // 8)
noise = np.random.randn(*latents_shape).astype(np.float32)
if image is None:
# if you use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
if isinstance(self.scheduler, LMSDiscreteScheduler):
noise = noise * self.scheduler.sigmas[0].numpy()
return noise, {}
input_image, meta = preprocess(image)
latents = self.vae_encoder(input_image)[self._vae_e_output] * 0.18215
latents = self.scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()
return latents, meta
def postprocess_image(self, image:np.ndarray, meta:Dict, output_type:str = "pil"):
"""
Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required),
normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format
Parameters:
image (np.ndarray):
Generated image
meta (Dict):
Metadata obtained on latents preparing step, can be empty
output_type (str, *optional*, pil):
Output format for result, can be pil or numpy
Returns:
image (List of np.ndarray or PIL.Image.Image):
Postprocessed images
"""
if "padding" in meta:
pad = meta["padding"]
(_, end_h), (_, end_w) = pad[1:3]
h, w = image.shape[2:]
unpad_h = h - end_h
unpad_w = w - end_w
image = image[:, :, :unpad_h, :unpad_w]
image = np.clip(image / 2 + 0.5, 0, 1)
image = np.transpose(image, (0, 2, 3, 1))
# 9. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if "src_height" in meta:
orig_height, orig_width = meta["src_height"], meta["src_width"]
image = [img.resize((orig_width, orig_height),
PIL.Image.Resampling.LANCZOS) for img in image]
else:
if "src_height" in meta:
orig_height, orig_width = meta["src_height"], meta["src_width"]
image = [cv2.resize(img, (orig_width, orig_width))
for img in image]
return image
def get_timesteps(self, num_inference_steps:int, strength:float):
"""
Helper function for getting scheduler timesteps for generation
In case of image-to-image generation, it updates number of steps according to strength
Parameters:
num_inference_steps (int):
number of inference steps for generation
strength (float):
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
Values that approach 1.0 enable lots of variations but will also produce images that are not semantically consistent with the input.
"""
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
core=pv.Core()
import ipywidgets as widgets
device=widgets.Dropdown(
options=core.available_devices+["AUTO"],
value="CPU",
desciption="Device:",
disabled=False,
)
device
text_enc=core.compile_model(text_encoder_path,device.value)
unet_model=core.compile_model(unet_path,device.value)
pv_config={"INFERENCE_PRECISION_HINT":"f32"}if device.value !="CPU" else {}
vae_decoder=core.compile_model(VAE_DECODER_PATH,device.value,pv_config)
vae_encoder=core.compile_model(VAE_ENCODER_PATH,device.value,pv_config)
from transformers import CLIPTokenizer
from diffusers.schedulers import LMSDiscreteScheduler
lms=LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear")
tokenizer=CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
pv_pipe=OVStableDiffusionPipeline(
tokenizer=tokenizer,
text_encoder=text_enc,
unet=unet_model,
vae_encoder=vae_encoder,
vae_decoder=vae_decoder,
scheduler=lms)
from ipywidgets import widgets
sample_text=("A Dog wearing golden rich mens necklace")
text_prompt=widgets.Text(value=sample_text,description="A Dog wearing golden rich mens necklace ")
num_steps=widgets.IntSlider(min=1,max=50,value=20,description="steps:")
seed=widgets.IntSlider(min=0,max=10000000,description="seed:",value=54)
widgets.VBox([text_prompt,seed,num_steps])
result=pv_pipe(text_prompt.value,num_inference_steps=num_steps.value,seed=seed.value)
def generate_text(text,seed,num_steps,strength,_=gr.Progress(track_tqdm=True)):
result=pv_pipe(text,num_inference_steps=num_steps,seed=seed)
return result["sample"][0]
def generate_image(img,text,seed,num_steps,strength,_=gr.Progress(track_tqdm=True)):
result=pv_pipe(text,img,num_inference_steps=num_steps,seed=seed,strength=strength)
return result["sample"][0]
with gr.Blocks() as demo:
with gr.Tab("Zero-shot Text-to-Image Generation"):
with gr.Row():
with gr.Column():
text_input=gr.Textbox(lines=3,label="Text")
seed_input=gr.Slider(0,10000000,value=42,label="seed")
steps_input=gr.Slider(1,50,value=20,step=1,label="steps")
out=gr.Image(label="Result",type="pil")
btn=gr.Button()
btn.click(generate_text,[text_input,seed_input,steps_input],out)
gr.Examples([[sample_text,42,20]],[text_input,seed_input,steps_input])
try:
demo.queue().launch(debug=True)
except Exception:
demo.queue().launch(share=True,debug=True)