Spaces:
Sleeping
Sleeping
| from metrics import ( | |
| calculate_msd, | |
| calculate_f0_correlation, | |
| calculate_phoneme_accuracy, | |
| calculate_spectral_convergence | |
| ) | |
| from inference import run_tts | |
| def evaluate_bd_tts(model, test_dataset): | |
| metrics = {} | |
| pred_audio, target_audio = [], [] | |
| for text, target in test_dataset: | |
| pred = run_tts(text) | |
| pred_audio.append(pred) | |
| target_audio.append(target) | |
| metrics['mel_spectral_distance'] = calculate_msd(pred_audio, target_audio) | |
| metrics['f0_correlation'] = calculate_f0_correlation(pred_audio, target_audio) | |
| metrics['phoneme_accuracy'] = calculate_phoneme_accuracy(pred_audio, target_audio) | |
| metrics['spectral_convergence'] = calculate_spectral_convergence(pred_audio, target_audio) | |
| # Accent classifier is usually a pretrained model | |
| # Placeholder: you’d plug in your Bangla accent classifier here | |
| metrics['accent_score'] = 0.85 | |
| return metrics | |
| if __name__ == "__main__": | |
| test_dataset = [("আমি বাংলা বলি।", "reference.wav")] # dummy dataset | |
| print(evaluate_bd_tts(None, test_dataset)) | |