llava-onevision / app.py
RaushanTurganbay's picture
200 tokens max
bfad488 verified
raw
history blame
4.87 kB
import gradio as gr
from transformers import LlavaOnevisionProcessor, LlavaOnevisionForConditionalGeneration, TextIteratorStreamer
from threading import Thread
import re
import time
from PIL import Image
import torch
import cv2
import spaces
model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf"
processor = LlavaOnevisionProcessor.from_pretrained(model_id)
model = LlavaOnevisionForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16)
model.to("cuda")
def sample_frames(video_file, num_frames):
video = cv2.VideoCapture(video_file)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
interval = total_frames // num_frames
frames = []
for i in range(total_frames):
ret, frame = video.read()
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if not ret:
continue
if i % interval == 0:
frames.append(pil_img)
video.release()
return frames
@spaces.GPU
def bot_streaming(message, history):
txt = message.text
ext_buffer = f"user\n{txt} assistant"
if message.files:
if len(message.files) == 1:
image = [message.files[0].path]
# interleaved images or video
elif len(message.files) > 1:
image = [msg.path for msg in message.files]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0])==tuple:
image = hist[0][0]
if message.files is None:
gr.Error("You need to upload an image or video for LLaVA to work.")
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg")
image_extensions = Image.registered_extensions()
image_extensions = tuple([ex for ex, f in image_extensions.items()])
if len(image) == 1:
if image[0].endswith(video_extensions):
video = sample_frames(image[0], 32)
image = None
prompt = f"<|im_start|>user <video>\n{message.text}<|im_end|><|im_start|>assistant"
elif image[0].endswith(image_extensions):
image = Image.open(image[0]).convert("RGB")
video = None
prompt = f"<|im_start|>user <image>\n{message.text}<|im_end|><|im_start|>assistant"
elif len(image) > 1:
image_list = []
user_prompt = message.text
for img in image:
if img.endswith(image_extensions):
img = Image.open(img).convert("RGB")
image_list.append(img)
elif img.endswith(video_extensions):
frames = sample_frames(img, 6)
for frame in frames:
image_list.append(frame)
toks = "<image>" * len(image_list)
prompt = "<|im_start|>user"+ toks + f"\n{user_prompt}<|im_end|><|im_start|>assistant"
image = image_list
video = None
inputs = processor(text=prompt, images=image, videos=video, return_tensors="pt").to("cuda", torch.float16)
streamer = TextIteratorStreamer(processor, **{"max_new_tokens": 200, "skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=200)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer[len(ext_buffer):]
time.sleep(0.01)
yield generated_text_without_prompt
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Onevision", examples=[
{"text": "Do the cats in these two videos have same breed? What breed is each cat?", "files":["./cats_1.mp4", "./cats_2.mp4"]},
{"text": "These are the tech specs of two laptops I am choosing from. Which one should I choose for office work?", "files":["./dell-tech-specs.jpeg", "./asus-tech-specs.png"]},
{"text": "Here are several images from a cooking book, showing how to prepare a meal step by step. Can you write a recipe for the meal, describing each step in details?", "files":["./step0.png", "./step1.png", "./step2.png", "./step3.png", "./step4.png", "./step5.png"]},
{"text": "What is on the flower?", "files":["./bee.jpg"]},
{"text": "This is a video explaining how to create a Presentation in GoogleSlides. Can you write down what I should do step by step, following the video?", "files":["./tutorial.mp4"]}],
textbox=gr.MultimodalTextbox(file_count="multiple"),
description="Try [LLaVA Onevision](https://huggingface.co/docs/transformers/main/en/model_doc/llava_onevision) in this demo (more specifically, the [Qwen-2-0.5B-Instruct variant](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf)). Upload an image or a video, and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error. ",
stop_btn="Stop Generation", multimodal=True)
demo.launch(debug=True)