Update voice_chat.py
Browse files- voice_chat.py +8 -99
voice_chat.py
CHANGED
@@ -9,89 +9,6 @@ import torch
|
|
9 |
import sentencepiece as spm
|
10 |
import onnxruntime as ort
|
11 |
from huggingface_hub import hf_hub_download, InferenceClient
|
12 |
-
import requests
|
13 |
-
from bs4 import BeautifulSoup
|
14 |
-
import urllib
|
15 |
-
import random
|
16 |
-
|
17 |
-
# List of user agents to choose from for requests
|
18 |
-
_useragent_list = [
|
19 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
|
20 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
21 |
-
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
22 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
|
23 |
-
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
24 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
|
25 |
-
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
|
26 |
-
]
|
27 |
-
|
28 |
-
def get_useragent():
|
29 |
-
"""Returns a random user agent from the list."""
|
30 |
-
return random.choice(_useragent_list)
|
31 |
-
|
32 |
-
def extract_text_from_webpage(html_content):
|
33 |
-
"""Extracts visible text from HTML content using BeautifulSoup."""
|
34 |
-
soup = BeautifulSoup(html_content, "html.parser")
|
35 |
-
# Remove unwanted tags
|
36 |
-
for tag in soup(["script", "style", "header", "footer", "nav"]):
|
37 |
-
tag.extract()
|
38 |
-
# Get the remaining visible text
|
39 |
-
visible_text = soup.get_text(strip=True)
|
40 |
-
return visible_text
|
41 |
-
|
42 |
-
def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
|
43 |
-
"""Performs a Google search and returns the results."""
|
44 |
-
escaped_term = urllib.parse.quote_plus(term)
|
45 |
-
start = 0
|
46 |
-
all_results = []
|
47 |
-
|
48 |
-
# Fetch results in batches
|
49 |
-
while start < num_results:
|
50 |
-
resp = requests.get(
|
51 |
-
url="https://www.google.com/search",
|
52 |
-
headers={"User-Agent": get_useragent()}, # Set random user agent
|
53 |
-
params={
|
54 |
-
"q": term,
|
55 |
-
"num": num_results - start, # Number of results to fetch in this batch
|
56 |
-
"hl": lang,
|
57 |
-
"start": start,
|
58 |
-
"safe": safe,
|
59 |
-
},
|
60 |
-
timeout=timeout,
|
61 |
-
verify=ssl_verify,
|
62 |
-
)
|
63 |
-
resp.raise_for_status() # Raise an exception if request fails
|
64 |
-
|
65 |
-
soup = BeautifulSoup(resp.text, "html.parser")
|
66 |
-
result_block = soup.find_all("div", attrs={"class": "g"})
|
67 |
-
|
68 |
-
# If no results, continue to the next batch
|
69 |
-
if not result_block:
|
70 |
-
start += 1
|
71 |
-
continue
|
72 |
-
|
73 |
-
# Extract link and text from each result
|
74 |
-
for result in result_block:
|
75 |
-
link = result.find("a", href=True)
|
76 |
-
if link:
|
77 |
-
link = link["href"]
|
78 |
-
try:
|
79 |
-
# Fetch webpage content
|
80 |
-
webpage = requests.get(link, headers={"User-Agent": get_useragent()})
|
81 |
-
webpage.raise_for_status()
|
82 |
-
# Extract visible text from webpage
|
83 |
-
visible_text = extract_text_from_webpage(webpage.text)
|
84 |
-
all_results.append({"link": link, "text": visible_text})
|
85 |
-
except requests.exceptions.RequestException as e:
|
86 |
-
# Handle errors fetching or processing webpage
|
87 |
-
print(f"Error fetching or processing {link}: {e}")
|
88 |
-
all_results.append({"link": link, "text": None})
|
89 |
-
else:
|
90 |
-
all_results.append({"link": None, "text": None})
|
91 |
-
|
92 |
-
start += len(result_block) # Update starting index for next batch
|
93 |
-
|
94 |
-
return all_results
|
95 |
|
96 |
# Speech Recognition Model Configuration
|
97 |
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
|
@@ -103,8 +20,8 @@ encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfold
|
|
103 |
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
|
104 |
|
105 |
# Mistral Model Configuration
|
106 |
-
client1 = InferenceClient("mistralai/
|
107 |
-
system_instructions1 = "
|
108 |
|
109 |
def resample(audio_fp32, sr):
|
110 |
return soxr.resample(audio_fp32, sr, sample_rate)
|
@@ -132,22 +49,14 @@ def transcribe(audio_path):
|
|
132 |
|
133 |
return text
|
134 |
|
135 |
-
def model(text
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
|
140 |
-
formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[ANSWER]"
|
141 |
-
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
|
142 |
-
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
|
143 |
-
else:
|
144 |
-
formatted_prompt = system_instructions1 + text + "[JARVIS]"
|
145 |
-
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
|
146 |
-
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
|
147 |
|
148 |
-
async def respond(audio
|
149 |
user = transcribe(audio)
|
150 |
-
reply = model(user
|
151 |
communicate = edge_tts.Communicate(reply)
|
152 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
153 |
tmp_path = tmp_file.name
|
|
|
9 |
import sentencepiece as spm
|
10 |
import onnxruntime as ort
|
11 |
from huggingface_hub import hf_hub_download, InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Speech Recognition Model Configuration
|
14 |
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
|
|
|
20 |
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
|
21 |
|
22 |
# Mistral Model Configuration
|
23 |
+
client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
|
24 |
+
system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
|
25 |
|
26 |
def resample(audio_fp32, sr):
|
27 |
return soxr.resample(audio_fp32, sr, sample_rate)
|
|
|
49 |
|
50 |
return text
|
51 |
|
52 |
+
def model(text):
|
53 |
+
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
|
54 |
+
stream = client1.text_generation(formatted_prompt, max_new_tokens=300)
|
55 |
+
return stream[:-4]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
async def respond(audio):
|
58 |
user = transcribe(audio)
|
59 |
+
reply = model(user)
|
60 |
communicate = edge_tts.Communicate(reply)
|
61 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
62 |
tmp_path = tmp_file.name
|