Spaces:
Sleeping
Sleeping
import pickle | |
from minisom import MiniSom | |
import numpy as np | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from typing import List | |
from scipy.ndimage import median_filter | |
from scipy.signal import convolve2d | |
import cv2 | |
import math | |
class InputData(BaseModel): | |
data: List[float] # Lista de características numéricas (floats) | |
app = FastAPI() | |
def build_model(): | |
with open('somlucuma.pkl', 'rb') as fid: | |
somhuella = pickle.load(fid) | |
MM = np.loadtxt('matrizMM.txt', delimiter=" ") | |
return somhuella,MM | |
def sobel(patron): | |
gx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=np.float32) | |
gy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=np.float32) | |
Gx = convolve2d(patron, gx, mode='valid') | |
Gy = convolve2d(patron, gy, mode='valid') | |
return Gx, Gy | |
def medfilt2(G, d=3): | |
return median_filter(G, size=d) | |
def orientacion(patron, w): | |
Gx, Gy = sobel(patron) | |
Gx = medfilt2(Gx) | |
Gy = medfilt2(Gy) | |
m, n = Gx.shape | |
mOrientaciones = np.zeros((m // w, n // w), dtype=np.float32) | |
for i in range(m // w): | |
for j in range(n // w): | |
Gx_patch = Gx[i*w:(i+1)*w, j*w:(j+1)*w] | |
Gy_patch = Gy[i*w:(i+1)*w, j*w:(j+1)*w] | |
YY = np.sum(2 * Gx_patch * Gy_patch) | |
XX = np.sum(Gx_patch**2 - Gy_patch**2) | |
mOrientaciones[i, j] = (0.5 * np.arctan2(YY, XX) + np.pi / 2.0) * (18.0 / np.pi) | |
return mOrientaciones | |
def redimensionar(img, h, v): | |
return cv2.resize(img, (h, v), interpolation=cv2.INTER_AREA) | |
def testeo(som,archivo): | |
Xtest = redimensionar(archivo,256,256) | |
Xtest = np.array(Xtest) | |
Xtest = Xtest.astype('float32') / 255.0 | |
Xtest = cv2.cvtColor(Xtest, cv2.COLOR_BGR2GRAY) | |
orientaciones = orientacion(Xtest, w=14) | |
orientaciones = orientaciones.reshape(-1) | |
Xtest = np.concatenate([orientaciones.ravel()]) | |
return som.winner(Xtest) | |
som, MM = build_model() # Construir modelo | |
async def predict(data: InputData): | |
print(f"Data: {data}") | |
global som | |
global MM | |
try: | |
#input_data = np.array(data.data).reshape(256, 256, 3) | |
#representative_data = representativo(input_data) | |
#representative_data = representative_data.reshape(1, -1) | |
w = testeo(som,data.data) | |
prediction = MM[w] | |
return {"prediction": prediction} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |