JairoDanielMT commited on
Commit
13aca20
1 Parent(s): 9bdf462

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -21
app.py CHANGED
@@ -1,40 +1,51 @@
 
 
1
  from fastapi import FastAPI, HTTPException
2
- from keras.models import model_from_json
3
  from pydantic import BaseModel
4
  import numpy as np
5
  from typing import List
6
 
 
7
  class InputData(BaseModel):
8
  data: List[float] # Lista de características numéricas (flotantes)
9
-
 
10
  app = FastAPI()
11
- model = None # Inicializa el modelo como None
12
 
13
- # Carga del modelo
14
- def load_model():
15
- try:
16
- json_file = open("model.json", 'r')
17
- loaded_model_json = json_file.read()
18
- json_file.close()
19
- loaded_model = model_from_json(loaded_model_json)
20
- loaded_model.load_weights("model.h5")
21
- loaded_model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy'])
22
- return loaded_model
23
- except Exception as e:
24
- print(f"Error al cargar el modelo: {e}")
25
- return None
 
 
 
 
 
 
 
 
 
 
26
 
27
  # Ruta de predicción
28
  @app.post("/predict/")
29
  async def predict(data: InputData):
 
30
  global model
31
- if model is None:
32
- model = load_model()
33
- if model is None:
34
- raise HTTPException(status_code=500, detail="Model could not be loaded")
35
  try:
36
  # Convertir la lista de entrada a un array de NumPy para la predicción
37
- input_data = np.array(data.data).reshape(1, -1) # Asumiendo que la entrada debe ser de forma (1, num_features)
 
 
38
  prediction = model.predict(input_data).round()
39
  return {"prediction": prediction.tolist()}
40
  except Exception as e:
 
1
+ from keras.api.models import Sequential
2
+ from keras.api.layers import InputLayer, Dense
3
  from fastapi import FastAPI, HTTPException
 
4
  from pydantic import BaseModel
5
  import numpy as np
6
  from typing import List
7
 
8
+
9
  class InputData(BaseModel):
10
  data: List[float] # Lista de características numéricas (flotantes)
11
+
12
+
13
  app = FastAPI()
 
14
 
15
+
16
+ # Función para construir el modelo manualmente
17
+ def build_model():
18
+ model = Sequential(
19
+ [
20
+ InputLayer(
21
+ input_shape=(2,), name="dense_2_input"
22
+ ), # Ajusta el tamaño de entrada según tu modelo
23
+ Dense(16, activation="relu", name="dense_2"),
24
+ Dense(1, activation="sigmoid", name="dense_3"),
25
+ ]
26
+ )
27
+ model.load_weights(
28
+ "model.h5"
29
+ ) # Asegúrate de que los nombres de las capas coincidan para que los pesos se carguen correctamente
30
+ model.compile(
31
+ loss="mean_squared_error", optimizer="adam", metrics=["binary_accuracy"]
32
+ )
33
+ return model
34
+
35
+
36
+ model = build_model() # Construir el modelo al iniciar la aplicación
37
+
38
 
39
  # Ruta de predicción
40
  @app.post("/predict/")
41
  async def predict(data: InputData):
42
+ print(f"Data: {data}")
43
  global model
 
 
 
 
44
  try:
45
  # Convertir la lista de entrada a un array de NumPy para la predicción
46
+ input_data = np.array(data.data).reshape(
47
+ 1, -1
48
+ ) # Asumiendo que la entrada debe ser de forma (1, num_features)
49
  prediction = model.predict(input_data).round()
50
  return {"prediction": prediction.tolist()}
51
  except Exception as e: