Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import os
|
@@ -7,11 +9,16 @@ model_name = "scb10x/llama-3-typhoon-v1.5x-70b-instruct-awq"
|
|
7 |
token = os.getenv("HF_TOKEN")
|
8 |
|
9 |
# Check if CUDA is available
|
10 |
-
device = torch.device("cuda"
|
|
|
11 |
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
|
13 |
model = AutoModelForCausalLM.from_pretrained(model_name, token=token).to(device)
|
14 |
|
|
|
|
|
|
|
|
|
15 |
def generate_text(prompt):
|
16 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
17 |
outputs = model.generate(inputs.input_ids, max_length=50)
|
|
|
1 |
+
!pip install --upgrade transformers
|
2 |
+
|
3 |
import gradio as gr
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import os
|
|
|
9 |
token = os.getenv("HF_TOKEN")
|
10 |
|
11 |
# Check if CUDA is available
|
12 |
+
device = torch.device("cuda")
|
13 |
+
torch.cuda.set_device(0) # Use the first CUDA device
|
14 |
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
|
16 |
model = AutoModelForCausalLM.from_pretrained(model_name, token=token).to(device)
|
17 |
|
18 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
19 |
+
print(f"Current device: {torch.cuda.current_device()}")
|
20 |
+
print(f"Device name: {torch.cuda.get_device_name(0)}")
|
21 |
+
|
22 |
def generate_text(prompt):
|
23 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
24 |
outputs = model.generate(inputs.input_ids, max_length=50)
|