RasmusLH commited on
Commit
0bb01ed
1 Parent(s): 9664bc9

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +158 -0
app.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Streamlit application
2
+
3
+ # Import necessary libraries
4
+ import streamlit as st
5
+ import pandas as pd
6
+ from openai import OpenAI
7
+ from sklearn.feature_extraction.text import TfidfVectorizer
8
+ from sklearn.metrics.pairwise import cosine_similarity
9
+ import os
10
+ from dotenv import load_dotenv
11
+
12
+ # Import data
13
+ music_data = pd.read_csv("Spotify_Youtube.csv")
14
+
15
+ # Specify api key for OpenAIs API
16
+
17
+ load_dotenv()
18
+
19
+ OPENAI_API_KEY=os.environ.get("OPENAI_API_KEY")
20
+
21
+ client = OpenAI()
22
+
23
+ # Function that calls OpenAIs API
24
+ def parse_user_input(user_input):
25
+ response = client.chat.completions.create(
26
+ model="gpt-3.5-turbo",
27
+ messages=[
28
+ {
29
+ "role": "system",
30
+ "content": """You will be provided with an input: '{user_input}', and your task is to determine the following:
31
+ - Valence: a number that is equal to the mood. Positive moods are closer to 1 and negative moods are closer to 0.
32
+ - Number of songs: the number of songs the user requests.
33
+ - Tempo: the tempo of the songs.
34
+ - Danceability: the danceability of the songs.
35
+
36
+ Provide this information in the following format with each value separated by a space:
37
+ 'valence number_of_songs tempo danceability'
38
+ Example: '0.5 20 120 0.8'
39
+ """
40
+ },
41
+ {
42
+ "role": "user",
43
+ "content": user_input
44
+ },
45
+ {
46
+ "role": "assistant",
47
+ "content": "0.5 20, 120, 0.8"
48
+ }
49
+ ],
50
+ temperature=0.5,
51
+ max_tokens=64,
52
+ top_p=1
53
+ )
54
+ return response.choices[0].message.content
55
+
56
+
57
+ # Function create new dataframe from music dataframe based on valence, number of tracks, tempo an danceability
58
+ def get_tracks_by_artist_and_danceability(music_data, valence, num_tracks, tempo, danceability):
59
+ filtered_tracks = music_data[
60
+ (music_data['Valence'].between(valence - 0.1, valence + 0.1)) &
61
+ (music_data['Tempo'].between(tempo - 30, tempo + 30)) &
62
+ (music_data['Danceability'].between(danceability - 0.2, danceability + 0.2))
63
+ ]
64
+ return filtered_tracks.head(num_tracks)[['Track', 'Artist']]
65
+
66
+ # Function the recommends tracks by using tfidVectoricer and cosine_similarities
67
+ def recommend_tracks(track_names, track_ids, top_k=20):
68
+ vectorizer = TfidfVectorizer()
69
+ tfidf_matrix = vectorizer.fit_transform(track_names)
70
+ similarities = cosine_similarity(tfidf_matrix)
71
+ avg_similarity = similarities.mean(axis=0)
72
+ top_indices = avg_similarity.argsort()[-top_k:][::-1]
73
+ return track_ids.iloc[top_indices]
74
+
75
+ # Streamlit Application
76
+
77
+ logo = "music_logo.png"
78
+
79
+ # Sidebar
80
+ with st.sidebar:
81
+ st.image(logo, width=100)
82
+ st.header("Navigation")
83
+ tab_selection = st.sidebar.radio("Go to", ["Music Generator", "Browse Music", "About Us"])
84
+
85
+ # Music generator page
86
+ if tab_selection == "Music Generator":
87
+ st.header("Mood Playlist Generator", divider='rainbow')
88
+ st.write("Enter your music preferences in a detailed format and recieve a personalized playlist based on your mood:")
89
+ user_prompt = st.text_input("Example: 'I want 20 happy songs with a lot of tempo that i can dance to!'")
90
+
91
+ if st.button("Generate Playlist"):
92
+ try:
93
+ with st.spinner("Processing your request..."):
94
+ parsed_input = parse_user_input(user_prompt)
95
+ #st.write(f"Parsed input: {parsed_input}")
96
+
97
+ # Extract valence and number of songs from the parsed input
98
+ valence, num_tracks, tempo, danceability = parsed_input.split()
99
+ valence = float(valence)
100
+ num_tracks = int(num_tracks)
101
+ tempo = int(tempo)
102
+ danceability = (float(danceability))
103
+
104
+ #st.write(f"Number of tracks: {num_tracks}, Valence: {valence}, Tempo: {tempo}, Danceability: {danceability}")
105
+
106
+ tracks = get_tracks_by_artist_and_danceability(music_data, valence, num_tracks, tempo, danceability)
107
+ #st.write(f"Found {len(tracks)} tracks.")
108
+
109
+ if tracks.empty:
110
+ st.write("No tracks found. Please try a different query.")
111
+ else:
112
+ track_names = tracks['Track'].tolist()
113
+ track_ids = tracks[['Track', 'Artist']]
114
+ #st.write("Track names:", track_names)
115
+
116
+ recommended_tracks = recommend_tracks(track_names, track_ids, top_k=int(num_tracks))
117
+ st.write("Here are your recommended playlist:")
118
+ st.table(recommended_tracks)
119
+ st.button("Add playlist to Spotify")
120
+ except ValueError:
121
+ st.write("Error: Unable to parse the input. Please make sure the format is correct.")
122
+
123
+ # Browse music page
124
+ elif tab_selection == "Browse Music":
125
+ st.header("Browse Music", divider='rainbow')
126
+ st.write("Explore the music data used for generating your playlists.")
127
+ df = pd.read_csv("Spotify_Youtube.csv")
128
+ st.dataframe(df)
129
+
130
+ # About us page
131
+ elif tab_selection == "About Us":
132
+ st.header("About Us", divider='rainbow')
133
+ st.write("""
134
+ This App is developed by 4 ambitious university students, whose goals are to create playlists and music experiences which you can emotionally connect with.
135
+ """)
136
+ st.image("group_photo.jpg", caption="Our Team", use_column_width=True)
137
+
138
+ # Add custom CSS
139
+ st.markdown(
140
+ """
141
+ <style>
142
+ .css-18e3th9 {
143
+ padding-top: 2rem;
144
+ }
145
+ .css-1d391kg {
146
+ padding-top: 1.5rem;
147
+ }
148
+ .css-1d2jrlv {
149
+ padding-bottom: 1rem;
150
+ }
151
+ .css-1v3fvcr {
152
+ padding-top: 1rem;
153
+ padding-bottom: 1rem;
154
+ }
155
+ </style>
156
+ """,
157
+ unsafe_allow_html=True
158
+ )