Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# def translate_and_speak(text):
|
| 2 |
+
# input_text = "en " + text
|
| 3 |
+
# encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 4 |
+
# generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
|
| 5 |
+
# output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
| 6 |
+
|
| 7 |
+
# for tag in ["__en__", "__sa__", "en", "sa"]:
|
| 8 |
+
# output = output.replace(tag, "")
|
| 9 |
+
# sanskrit_text = output.strip()
|
| 10 |
+
|
| 11 |
+
# # Convert to speech
|
| 12 |
+
# tts = gTTS(sanskrit_text, lang='hi')
|
| 13 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
|
| 14 |
+
# tts.save(fp.name)
|
| 15 |
+
# audio_path = fp.name
|
| 16 |
+
|
| 17 |
+
# return sanskrit_text, audio_path
|
| 18 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
| 19 |
+
import torch
|
| 20 |
+
from gtts import gTTS
|
| 21 |
+
import gradio as gr
|
| 22 |
+
import tempfile
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Load model and tokenizer
|
| 27 |
+
model__name = "Helsinki-NLP/opus-mt-en-hi"
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Use GPU if available
|
| 31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 32 |
+
model = model.to(device)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
model_name = "SweUmaVarsh/m2m100-en-sa-translation"
|
| 36 |
+
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
|
| 37 |
+
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def translate_and_speak(text):
|
| 42 |
+
input_text = "en " + text
|
| 43 |
+
encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 44 |
+
generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
|
| 45 |
+
output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
| 46 |
+
|
| 47 |
+
for tag in ["__en__", "__sa__", "en", "sa"]:
|
| 48 |
+
output = output.replace(tag, "")
|
| 49 |
+
sanskrit_text = output.strip()
|
| 50 |
+
|
| 51 |
+
# Convert to speech
|
| 52 |
+
tts = gTTS(sanskrit_text, lang='hi')
|
| 53 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
|
| 54 |
+
tts.save(fp.name)
|
| 55 |
+
audio_path = fp.name
|
| 56 |
+
|
| 57 |
+
return sanskrit_text, audio_path
|
| 58 |
+
|
| 59 |
+
iface = gr.Interface(
|
| 60 |
+
fn=translate_and_speak,
|
| 61 |
+
inputs=gr.Textbox(label="Enter English Text"),
|
| 62 |
+
outputs=[gr.Textbox(label="Sanskrit Translation"), gr.Audio(label="Sanskrit Speech")],
|
| 63 |
+
title="Final Year Project: English to Sanskrit Translator (IT 'A' 2021–2025)",
|
| 64 |
+
description="Enter a sentence in English to get its Sanskrit translation and audio output."
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
iface.launch()
|