RashiAgarwal
commited on
Commit
•
5e987a7
1
Parent(s):
db4f44b
Upload 2 files
Browse files- dataset.py +277 -0
- loss.py +87 -0
dataset.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Creates a Pytorch dataset to load the Pascal VOC & MS COCO datasets
|
3 |
+
"""
|
4 |
+
|
5 |
+
import config
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
9 |
+
import torch
|
10 |
+
from utils import xywhn2xyxy, xyxy2xywhn
|
11 |
+
import random
|
12 |
+
|
13 |
+
from PIL import Image, ImageFile
|
14 |
+
from torch.utils.data import Dataset, DataLoader
|
15 |
+
from utils import (
|
16 |
+
cells_to_bboxes,
|
17 |
+
iou_width_height as iou,
|
18 |
+
non_max_suppression as nms,
|
19 |
+
plot_image
|
20 |
+
)
|
21 |
+
|
22 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
23 |
+
|
24 |
+
class YOLODataset(Dataset):
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
csv_file,
|
28 |
+
img_dir,
|
29 |
+
label_dir,
|
30 |
+
anchors,
|
31 |
+
image_size=416,
|
32 |
+
S=[13, 26, 52],
|
33 |
+
C=20,
|
34 |
+
transform=None,
|
35 |
+
):
|
36 |
+
self.annotations = pd.read_csv(csv_file)
|
37 |
+
self.img_dir = img_dir
|
38 |
+
self.label_dir = label_dir
|
39 |
+
self.image_size = image_size
|
40 |
+
self.mosaic_border = [image_size // 2, image_size // 2]
|
41 |
+
self.transform = transform
|
42 |
+
self.S = S
|
43 |
+
self.anchors = torch.tensor(anchors[0] + anchors[1] + anchors[2]) # for all 3 scales
|
44 |
+
self.num_anchors = self.anchors.shape[0]
|
45 |
+
self.num_anchors_per_scale = self.num_anchors // 3
|
46 |
+
self.C = C
|
47 |
+
self.ignore_iou_thresh = 0.5
|
48 |
+
|
49 |
+
def __len__(self):
|
50 |
+
return len(self.annotations)
|
51 |
+
|
52 |
+
def load_image(self, index):
|
53 |
+
|
54 |
+
label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
|
55 |
+
|
56 |
+
# Load data from the file
|
57 |
+
data = np.loadtxt(fname=label_path,delimiter=" ", ndmin=2)
|
58 |
+
|
59 |
+
# Shift the values in each row by 4 positions to the right
|
60 |
+
shifted_data = np.roll(data, 4, axis=1)
|
61 |
+
|
62 |
+
# Convert the shifted data to a Python list
|
63 |
+
bboxes = shifted_data.tolist()
|
64 |
+
|
65 |
+
img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
|
66 |
+
|
67 |
+
image = np.array(Image.open(img_path).convert("RGB"))
|
68 |
+
|
69 |
+
return image, bboxes
|
70 |
+
|
71 |
+
def load_mosaic(self, index, p=0.75):
|
72 |
+
''' loading mosaic augmentation for only 75% times '''
|
73 |
+
|
74 |
+
k = np.random.rand(1)
|
75 |
+
if k > p:
|
76 |
+
|
77 |
+
return self.load_image(index)
|
78 |
+
|
79 |
+
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
80 |
+
labels4 = []
|
81 |
+
s = self.image_size
|
82 |
+
yc, xc = (int(random.uniform(x, 2 * s - x)) for x in self.mosaic_border) # mosaic center x, y
|
83 |
+
indices = [index] + random.choices(range(len(self)), k=3) # 3 additional image indices
|
84 |
+
random.shuffle(indices)
|
85 |
+
for i, index in enumerate(indices):
|
86 |
+
# Load image
|
87 |
+
label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
|
88 |
+
bboxes = np.roll(np.loadtxt(fname=label_path, delimiter=" ", ndmin=2), 4, axis=1).tolist()
|
89 |
+
img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
|
90 |
+
img = np.array(Image.open(img_path).convert("RGB"))
|
91 |
+
|
92 |
+
|
93 |
+
h, w = img.shape[0], img.shape[1]
|
94 |
+
labels = np.array(bboxes)
|
95 |
+
|
96 |
+
# place img in img4
|
97 |
+
if i == 0: # top left
|
98 |
+
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
99 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
100 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
101 |
+
elif i == 1: # top right
|
102 |
+
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
103 |
+
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
104 |
+
elif i == 2: # bottom left
|
105 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
106 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
107 |
+
elif i == 3: # bottom right
|
108 |
+
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
109 |
+
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
110 |
+
|
111 |
+
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
112 |
+
padw = x1a - x1b
|
113 |
+
padh = y1a - y1b
|
114 |
+
|
115 |
+
# Labels
|
116 |
+
if labels.size:
|
117 |
+
labels[:, :-1] = xywhn2xyxy(labels[:, :-1], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
118 |
+
labels4.append(labels)
|
119 |
+
|
120 |
+
# Concat/clip labels
|
121 |
+
labels4 = np.concatenate(labels4, 0)
|
122 |
+
for x in (labels4[:, :-1],):
|
123 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
124 |
+
# img4, labels4 = replicate(img4, labels4) # replicate
|
125 |
+
labels4[:, :-1] = xyxy2xywhn(labels4[:, :-1], 2 * s, 2 * s)
|
126 |
+
labels4[:, :-1] = np.clip(labels4[:, :-1], 0, 1)
|
127 |
+
labels4 = labels4[labels4[:, 2] > 0]
|
128 |
+
labels4 = labels4[labels4[:, 3] > 0]
|
129 |
+
return img4, labels4
|
130 |
+
|
131 |
+
def __getitem__(self, index):
|
132 |
+
|
133 |
+
# k = np.random.rand(1)
|
134 |
+
# if k >= 0.75:
|
135 |
+
|
136 |
+
# image, (h0, w0), (h, w) = load_image(self, index)
|
137 |
+
|
138 |
+
# # Letterbox
|
139 |
+
# shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
140 |
+
# image, ratio, pad = letterbox(image, shape, auto=False, scaleup=self.augment)
|
141 |
+
# shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
142 |
+
|
143 |
+
# # Load labels
|
144 |
+
# bboxes = []
|
145 |
+
# x = self.bboxes[index]
|
146 |
+
# if x is not None and x.size > 0:
|
147 |
+
# # Normalized xywh to pixel xyxy format
|
148 |
+
# bboxes = x.copy()
|
149 |
+
# bboxes[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
|
150 |
+
# bboxes[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
|
151 |
+
# bboxes[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
|
152 |
+
# bboxes[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
|
153 |
+
|
154 |
+
|
155 |
+
# else:
|
156 |
+
image, bboxes = self.load_mosaic(index)
|
157 |
+
|
158 |
+
if self.transform:
|
159 |
+
augmentations = self.transform(image=image, bboxes=bboxes)
|
160 |
+
image = augmentations["image"]
|
161 |
+
bboxes = augmentations["bboxes"]
|
162 |
+
|
163 |
+
# Below assumes 3 scale predictions (as paper) and same num of anchors per scale
|
164 |
+
targets = [torch.zeros((self.num_anchors // 3, S, S, 6)) for S in self.S]
|
165 |
+
for box in bboxes:
|
166 |
+
iou_anchors = iou(torch.tensor(box[2:4]), self.anchors)
|
167 |
+
anchor_indices = iou_anchors.argsort(descending=True, dim=0)
|
168 |
+
x, y, width, height, class_label = box
|
169 |
+
has_anchor = [False] * 3 # each scale should have one anchor
|
170 |
+
for anchor_idx in anchor_indices:
|
171 |
+
scale_idx = anchor_idx // self.num_anchors_per_scale
|
172 |
+
anchor_on_scale = anchor_idx % self.num_anchors_per_scale
|
173 |
+
S = self.S[scale_idx]
|
174 |
+
i, j = int(S * y), int(S * x) # which cell
|
175 |
+
anchor_taken = targets[scale_idx][anchor_on_scale, i, j, 0]
|
176 |
+
if not anchor_taken and not has_anchor[scale_idx]:
|
177 |
+
targets[scale_idx][anchor_on_scale, i, j, 0] = 1
|
178 |
+
x_cell, y_cell = S * x - j, S * y - i # both between [0,1]
|
179 |
+
width_cell, height_cell = (
|
180 |
+
width * S,
|
181 |
+
height * S,
|
182 |
+
) # can be greater than 1 since it's relative to cell
|
183 |
+
box_coordinates = torch.tensor(
|
184 |
+
[x_cell, y_cell, width_cell, height_cell]
|
185 |
+
)
|
186 |
+
targets[scale_idx][anchor_on_scale, i, j, 1:5] = box_coordinates
|
187 |
+
targets[scale_idx][anchor_on_scale, i, j, 5] = int(class_label)
|
188 |
+
has_anchor[scale_idx] = True
|
189 |
+
|
190 |
+
elif not anchor_taken and iou_anchors[anchor_idx] > self.ignore_iou_thresh:
|
191 |
+
targets[scale_idx][anchor_on_scale, i, j, 0] = -1 # ignore prediction
|
192 |
+
|
193 |
+
return image, tuple(targets)
|
194 |
+
|
195 |
+
def load_image(self, index):
|
196 |
+
# loads 1 image from dataset, returns img, original hw, resized hw
|
197 |
+
img = self.imgs[index]
|
198 |
+
if img is None: # not cached
|
199 |
+
img_path = self.img_files[index]
|
200 |
+
img = cv2.imread(img_path) # BGR
|
201 |
+
assert img is not None, 'Image Not Found ' + img_path
|
202 |
+
h0, w0 = img.shape[:2] # orig hw
|
203 |
+
r = self.img_size / max(h0, w0) # resize image to img_size
|
204 |
+
if r < 1 or (self.augment and r != 1): # always resize down, only resize up if training with augmentation
|
205 |
+
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
|
206 |
+
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
207 |
+
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
|
208 |
+
else:
|
209 |
+
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
|
210 |
+
|
211 |
+
def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
|
212 |
+
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
|
213 |
+
shape = img.shape[:2] # current shape [height, width]
|
214 |
+
if isinstance(new_shape, int):
|
215 |
+
new_shape = (new_shape, new_shape)
|
216 |
+
|
217 |
+
# Scale ratio (new / old)
|
218 |
+
r = max(new_shape) / max(shape)
|
219 |
+
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
220 |
+
r = min(r, 1.0)
|
221 |
+
|
222 |
+
# Compute padding
|
223 |
+
ratio = r, r # width, height ratios
|
224 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
225 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
226 |
+
if auto: # minimum rectangle
|
227 |
+
dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
|
228 |
+
elif scaleFill: # stretch
|
229 |
+
dw, dh = 0.0, 0.0
|
230 |
+
new_unpad = new_shape
|
231 |
+
ratio = new_shape[0] / shape[1], new_shape[1] / shape[0] # width, height ratios
|
232 |
+
|
233 |
+
dw /= 2 # divide padding into 2 sides
|
234 |
+
dh /= 2
|
235 |
+
|
236 |
+
if shape[::-1] != new_unpad: # resize
|
237 |
+
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
238 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
239 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
240 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
241 |
+
return img, ratio, (dw, dh)
|
242 |
+
|
243 |
+
def test():
|
244 |
+
anchors = config.ANCHORS
|
245 |
+
|
246 |
+
transform = config.test_transforms
|
247 |
+
|
248 |
+
dataset = YOLODataset(
|
249 |
+
"COCO/train.csv",
|
250 |
+
"COCO/images/images/",
|
251 |
+
"COCO/labels/labels_new/",
|
252 |
+
S=[13, 26, 52],
|
253 |
+
anchors=anchors,
|
254 |
+
transform=transform,
|
255 |
+
)
|
256 |
+
S = [13, 26, 52]
|
257 |
+
scaled_anchors = torch.tensor(anchors) / (
|
258 |
+
1 / torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
259 |
+
)
|
260 |
+
loader = DataLoader(dataset=dataset, batch_size=1, shuffle=True)
|
261 |
+
for x, y in loader:
|
262 |
+
boxes = []
|
263 |
+
|
264 |
+
for i in range(y[0].shape[1]):
|
265 |
+
anchor = scaled_anchors[i]
|
266 |
+
print(anchor.shape)
|
267 |
+
print(y[i].shape)
|
268 |
+
boxes += cells_to_bboxes(
|
269 |
+
y[i], is_preds=False, S=y[i].shape[2], anchors=anchor
|
270 |
+
)[0]
|
271 |
+
boxes = nms(boxes, iou_threshold=1, threshold=0.7, box_format="midpoint")
|
272 |
+
print(boxes)
|
273 |
+
plot_image(x[0].permute(1, 2, 0).to("cpu"), boxes)
|
274 |
+
|
275 |
+
|
276 |
+
if __name__ == "__main__":
|
277 |
+
test()
|
loss.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of Yolo Loss Function similar to the one in Yolov3 paper,
|
3 |
+
the difference from what I can tell is I use CrossEntropy for the classes
|
4 |
+
instead of BinaryCrossEntropy.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from pytorch_lightning import LightningModule
|
10 |
+
from utils import intersection_over_union
|
11 |
+
|
12 |
+
|
13 |
+
class YoloLoss_basic(LightningModule):
|
14 |
+
def __init__(self):
|
15 |
+
super(YoloLoss_basic, self).__init__()
|
16 |
+
self.mse = nn.MSELoss()
|
17 |
+
self.bce = nn.BCEWithLogitsLoss()
|
18 |
+
self.entropy = nn.CrossEntropyLoss()
|
19 |
+
self.sigmoid = nn.Sigmoid()
|
20 |
+
|
21 |
+
# Constants signifying how much to pay for each respective part of the loss
|
22 |
+
self.lambda_class = 1
|
23 |
+
self.lambda_noobj = 10
|
24 |
+
self.lambda_obj = 1
|
25 |
+
self.lambda_box = 10
|
26 |
+
|
27 |
+
def cal_loss(self, predictions, target, anchors):
|
28 |
+
# Check where obj and noobj (we ignore if target == -1)
|
29 |
+
obj = target[..., 0] == 1 # in paper this is Iobj_i
|
30 |
+
noobj = target[..., 0] == 0 # in paper this is Inoobj_i
|
31 |
+
|
32 |
+
# ======================= #
|
33 |
+
# FOR NO OBJECT LOSS #
|
34 |
+
# ======================= #
|
35 |
+
|
36 |
+
no_object_loss = self.bce(
|
37 |
+
(predictions[..., 0:1][noobj]), (target[..., 0:1][noobj]),
|
38 |
+
)
|
39 |
+
|
40 |
+
# ==================== #
|
41 |
+
# FOR OBJECT LOSS #
|
42 |
+
# ==================== #
|
43 |
+
|
44 |
+
anchors = anchors.reshape(1, 3, 1, 1, 2).to(device="cuda")
|
45 |
+
box_preds = torch.cat([self.sigmoid(predictions[..., 1:3]), torch.exp(predictions[..., 3:5]) * anchors], dim=-1)
|
46 |
+
ious = intersection_over_union(box_preds[obj], target[..., 1:5][obj]).detach()
|
47 |
+
object_loss = self.mse(self.sigmoid(predictions[..., 0:1][obj]), ious * target[..., 0:1][obj])
|
48 |
+
|
49 |
+
# ======================== #
|
50 |
+
# FOR BOX COORDINATES #
|
51 |
+
# ======================== #
|
52 |
+
|
53 |
+
predictions[..., 1:3] = self.sigmoid(predictions[..., 1:3]) # x,y coordinates
|
54 |
+
target[..., 3:5] = torch.log(
|
55 |
+
(1e-16 + target[..., 3:5] / anchors)
|
56 |
+
) # width, height coordinates
|
57 |
+
box_loss = self.mse(predictions[..., 1:5][obj], target[..., 1:5][obj])
|
58 |
+
|
59 |
+
# ================== #
|
60 |
+
# FOR CLASS LOSS #
|
61 |
+
# ================== #
|
62 |
+
|
63 |
+
class_loss = self.entropy(
|
64 |
+
(predictions[..., 5:][obj]), (target[..., 5][obj].long()),
|
65 |
+
)
|
66 |
+
|
67 |
+
return (
|
68 |
+
self.lambda_box * box_loss
|
69 |
+
+ self.lambda_obj * object_loss
|
70 |
+
+ self.lambda_noobj * no_object_loss
|
71 |
+
+ self.lambda_class * class_loss
|
72 |
+
)
|
73 |
+
|
74 |
+
def forward(self, predictions, target, anchors):
|
75 |
+
return self.cal_loss(predictions, target, anchors)
|
76 |
+
|
77 |
+
|
78 |
+
class YoloLoss(LightningModule):
|
79 |
+
def __init__(self):
|
80 |
+
super(YoloLoss, self).__init__()
|
81 |
+
self.yolo_basic = YoloLoss_basic()
|
82 |
+
|
83 |
+
def forward(self, predictions, target, scaled_anchors):
|
84 |
+
tot_loss = 0
|
85 |
+
for i in range(len(target)):
|
86 |
+
tot_loss += self.yolo_basic(predictions[i], target[i], scaled_anchors[i])
|
87 |
+
return tot_loss
|