RashiAgarwal commited on
Commit
2a4462d
·
1 Parent(s): 5f47025

Upload display.py

Browse files
Files changed (1) hide show
  1. display.py +94 -0
display.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import albumentations as A
4
+ from utils import *
5
+ import random
6
+ from albumentations.pytorch import ToTensorV2
7
+
8
+ def inference(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.4, show_cam: bool = False, transparency: float = 0.5):
9
+
10
+ transforms = A.Compose(
11
+ [
12
+ A.LongestMaxSize(max_size=config.IMAGE_SIZE),
13
+ A.PadIfNeeded(
14
+ min_height=config.IMAGE_SIZE, min_width=config.IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
15
+ ),
16
+ A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
17
+ ToTensorV2(),
18
+ ],
19
+ )
20
+ with torch.no_grad():
21
+ transformed_image = transforms(image=image)["image"].unsqueeze(0)
22
+ output = model(transformed_image)
23
+
24
+ bboxes = [[] for _ in range(1)]
25
+ for i in range(3):
26
+ batch_size, A1, S, _, _ = output[i].shape
27
+ anchor = scaled_anchors[i].to('cpu')
28
+ boxes_scale_i = cells_to_bboxes(
29
+ output[i].to('cpu'), anchor, S=S, is_preds=True
30
+ )
31
+ for idx, (box) in enumerate(boxes_scale_i):
32
+ bboxes[idx] += box
33
+
34
+ nms_boxes = non_max_suppression(
35
+ bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
36
+ )
37
+ plot_img = draw_predictions(image, nms_boxes, class_labels=config.PASCAL_CLASSES)
38
+ if not show_cam:
39
+ return [plot_img]
40
+
41
+ grayscale_cam = cam(transformed_image, scaled_anchors)[0, :, :]
42
+ img = cv2.resize(image, (416, 416))
43
+ img = np.float32(img) / 255
44
+ cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True, image_weight=transparency)
45
+ return [plot_img, cam_image]
46
+
47
+
48
+ def draw_predictions(image: np.ndarray, boxes: list[list], class_labels: list[str]) -> np.ndarray:
49
+ """Plots predicted bounding boxes on the image"""
50
+
51
+ colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]
52
+
53
+ im = np.array(image)
54
+ height, width, _ = im.shape
55
+ bbox_thick = int((height + width) /1000)
56
+
57
+ # Create a Rectangle patch
58
+ for box in boxes:
59
+ assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
60
+ class_pred = box[0]
61
+ conf = box[1]
62
+ box = box[2:]
63
+ upper_left_x = box[0] - box[2] / 2
64
+ upper_left_y = box[1] - box[3] / 2
65
+
66
+ x1 = int(upper_left_x * width)
67
+ y1 = int(upper_left_y * height)
68
+
69
+ x2 = x1 + int(box[2] * width)
70
+ y2 = y1 + int(box[3] * height)
71
+
72
+ cv2.rectangle(
73
+ image,
74
+ (x1, y1), (x2, y2),
75
+ color=colors[int(class_pred)],
76
+ thickness=bbox_thick
77
+ )
78
+ text = f"{class_labels[int(class_pred)]}: {conf:.2f}"
79
+ t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0]
80
+ c3 = (x1 + t_size[0], y1 - t_size[1] - 3)
81
+
82
+ cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1)
83
+ cv2.putText(
84
+ image,
85
+ text,
86
+ (x1, y1 - 2),
87
+ cv2.FONT_ITALIC,
88
+ 0.7,
89
+ (0, 0, 0),
90
+ bbox_thick // 2,
91
+ lineType=cv2.LINE_8,
92
+ )
93
+
94
+ return image