import time | |
out_dir = 'out-shakespeare' | |
eval_interval = 5 | |
eval_iters = 40 | |
wandb_log = False # feel free to turn on | |
wandb_project = 'shakespeare' | |
wandb_run_name = 'ft-' + str(time.time()) | |
dataset = 'shakespeare' | |
init_from = 'gpt2-xl' # this is the largest GPT-2 model | |
# only save checkpoints if the validation loss improves | |
always_save_checkpoint = False | |
# the number of examples per iter: | |
# 1 batch_size * 32 grad_accum * 1024 tokens = 32,768 tokens/iter | |
# shakespeare has 301,966 tokens, so 1 epoch ~= 9.2 iters | |
batch_size = 1 | |
gradient_accumulation_steps = 32 | |
max_iters = 20 | |
# finetune at constant LR | |
learning_rate = 3e-5 | |
decay_lr = False | |