rusticluftig's picture
Add retries to loading runs from wandb
779bad9
raw
history blame
12.6 kB
import functools
import traceback
import gradio as gr
import bittensor as bt
from typing import Dict, List, Any, Optional, Tuple
from bittensor.extrinsics.serving import get_metadata
from dataclasses import dataclass
import requests
import wandb
import math
import os
import datetime
import time
import json
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler
load_dotenv()
FONT = (
"""<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
)
TITLE = """<h1 align="center" id="space-title" class="typewriter">Subnet 9 Leaderboard</h1>"""
HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/RaoFoundation/pretraining" target="_blank">Subnet 9</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that rewards miners for producing pretrained Foundation-Models on the <a href="https://huggingface.co/datasets/tiiuae/falcon-refinedweb" target="_blank">Falcon Refined Web dataset</a>. It acts like a continuous benchmark whereby miners are rewarded for attaining the best losses on randomly sampled pages of Falcon.<br/>The models with the best head-to-head loss on the evaluation data receive a steady emission of TAO.</h3>"""
EVALUATION_DETAILS = """<ul><li><b>Name:</b> the 🤗 Hugging Face model name (click to go to the model card)</li><li><b>Rewards / Day:</b> the expected rewards per day based on current ranking.</li><li><b>Last Average Loss:</b> the last loss value on the evaluation data for the model as calculated by a validator (lower is better)</li><li><b>UID:</b> the Bittensor UID of the miner</li><li><b>Block:</b> the Bittensor block that the model was submitted in</li></ul><br/>More stats on <a href="https://taostats.io/subnets/netuid-9/" target="_blank">taostats</a>."""
EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by the Opentensor validator</h3>"""
VALIDATOR_WANDB_PROJECT = "opentensor-dev/pretraining-subnet"
H4_TOKEN = os.environ.get("H4_TOKEN", None)
API = HfApi(token=H4_TOKEN)
WANDB_TOKEN = os.environ.get("WANDB_API_KEY", None)
REPO_ID = "RaoFoundation/pretraining-leaderboard"
MAX_AVG_LOSS_POINTS = 1
RETRIES = 5
DELAY_SECS = 3
NETUID = 9
SECONDS_PER_BLOCK = 12
@dataclass
class ModelData:
uid: int
hotkey: str
namespace: str
name: str
commit: str
hash: str
block: int
incentive: float
emission: float
@classmethod
def from_compressed_str(
cls,
uid: int,
hotkey: str,
cs: str,
block: int,
incentive: float,
emission: float,
):
"""Returns an instance of this class from a compressed string representation"""
tokens = cs.split(":")
return ModelData(
uid=uid,
hotkey=hotkey,
namespace=tokens[0],
name=tokens[1],
commit=tokens[2] if tokens[2] != "None" else None,
hash=tokens[3] if tokens[3] != "None" else None,
block=block,
incentive=incentive,
emission=emission,
)
def run_with_retries(func, *args, **kwargs):
for i in range(0, RETRIES):
try:
return func(*args, **kwargs)
except (Exception, RuntimeError):
if i == RETRIES - 1:
raise
time.sleep(DELAY_SECS)
raise RuntimeError("Should never happen")
def get_subtensor_and_metagraph() -> Tuple[bt.subtensor, bt.metagraph]:
def _internal() -> Tuple[bt.subtensor, bt.metagraph]:
subtensor = bt.subtensor("finney")
metagraph = bt.metagraph(NETUID, lite=False)
return subtensor, metagraph
return run_with_retries(_internal)
def get_validator_weights(
metagraph: bt.metagraph,
) -> Dict[int, Tuple[float, int, Dict[int, float]]]:
"""Returns a dictionary of validator UIDs to (vtrust, stake, {uid: weight})."""
ret = {}
for uid in metagraph.uids.tolist():
vtrust = metagraph.validator_trust[uid].item()
if vtrust > 0:
ret[uid] = (vtrust, metagraph.S[uid].item(), {})
for ouid in metagraph.uids.tolist():
if ouid == uid:
continue
weight = round(metagraph.weights[uid][ouid].item(), 4)
if weight > 0:
ret[uid][-1][ouid] = weight
return ret
def get_subnet_data(
subtensor: bt.subtensor, metagraph: bt.metagraph
) -> List[ModelData]:
result = []
for uid in metagraph.uids.tolist():
hotkey = metagraph.hotkeys[uid]
metadata = None
try:
metadata = run_with_retries(functools.partial(get_metadata, subtensor, metagraph.netuid, hotkey))
except:
print(f"Failed to get metadata for UID {uid}: {traceback.format_exc()}")
if not metadata:
continue
commitment = metadata["info"]["fields"][0]
hex_data = commitment[list(commitment.keys())[0]][2:]
chain_str = bytes.fromhex(hex_data).decode()
block = metadata["block"]
incentive = metagraph.incentive[uid].nan_to_num().item()
emission = (
metagraph.emission[uid].nan_to_num().item() * 20
) # convert to daily TAO
model_data = None
try:
model_data = ModelData.from_compressed_str(
uid, hotkey, chain_str, block, incentive, emission
)
except:
continue
result.append(model_data)
return result
def is_floatable(x) -> bool:
return (
isinstance(x, float) and not math.isnan(x) and not math.isinf(x)
) or isinstance(x, int)
def get_scores(
uids: List[int],
) -> Dict[int, Dict[str, Optional[float]]]:
runs = []
while True:
api = wandb.Api(api_key=WANDB_TOKEN)
runs = list(
api.runs(
VALIDATOR_WANDB_PROJECT,
filters={"config.type": "validator", "config.uid": 238},
)
)
if len(runs) > 0:
break
# WandDB API is quite unreliable. Wait another minute and try again.
print("Failed to get runs from Wandb. Trying again in 60 seconds.")
time.sleep(60)
result = {}
previous_timestamp = None
# Iterate through the runs until we've processed all the uids.
for i, run in enumerate(runs):
if not "original_format_json" in run.summary:
continue
data = json.loads(run.summary["original_format_json"])
all_uid_data = data["uid_data"]
timestamp = data["timestamp"]
# Make sure runs are indeed in descending time order.
assert (
previous_timestamp is None or timestamp < previous_timestamp
), f"Timestamps are not in descending order: {timestamp} >= {previous_timestamp}"
previous_timestamp = timestamp
for uid in uids:
if uid in result:
continue
if str(uid) in all_uid_data:
uid_data = all_uid_data[str(uid)]
# Only the most recent run is fresh.
is_fresh = i == 0
result[uid] = {
"avg_loss": uid_data.get("average_loss", None),
"win_rate": uid_data.get("win_rate", None),
"win_total": uid_data.get("win_total", None),
"weight": uid_data.get("weight", None),
"fresh": is_fresh,
}
if len(result) == len(uids):
break
return result
def format_score(uid: int, scores, key) -> Optional[float]:
if uid in scores:
if key in scores[uid]:
point = scores[uid][key]
if is_floatable(point):
return round(scores[uid][key], 4)
return None
def next_epoch(subtensor: bt.subtensor, block: int) -> int:
return block + subtensor.get_subnet_hyperparameters(
NETUID
).tempo - subtensor.blocks_since_epoch(NETUID, block)
def get_next_update_div(current_block: int, next_update_block: int) -> str:
now = datetime.datetime.now()
blocks_to_go = next_update_block - current_block
next_update_time = now + datetime.timedelta(
seconds=blocks_to_go * SECONDS_PER_BLOCK
)
delta = next_update_time - now
return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>"""
def get_last_updated_div() -> str:
return f"""<div>Last Updated: f{datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")} (UTC)</div>"""
def leaderboard_data(
leaderboard: List[ModelData],
scores: Dict[int, Dict[str, Optional[float]]],
show_stale: bool,
) -> List[List[Any]]:
"""Returns the leaderboard data, based on models data and UID scores."""
return [
[
f"[{c.namespace}/{c.name} ({c.commit[0:8]})](https://huggingface.co/{c.namespace}/{c.name}/commit/{c.commit})",
format_score(c.uid, scores, "win_rate"),
format_score(c.uid, scores, "avg_loss"),
format_score(c.uid, scores, "weight"),
c.uid,
c.block,
]
for c in leaderboard
if (c.uid in scores and scores[c.uid]["fresh"]) or show_stale
]
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def main():
subtensor, metagraph = get_subtensor_and_metagraph()
model_data: List[ModelData] = get_subnet_data(subtensor, metagraph)
model_data.sort(key=lambda x: x.incentive, reverse=True)
scores = get_scores([x.uid for x in model_data])
current_block = metagraph.block.item()
next_epoch_block = next_epoch(subtensor, current_block)
validator_df = get_validator_weights(metagraph)
weight_keys = set()
for uid, stats in validator_df.items():
weight_keys.update(stats[-1].keys())
demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
with demo:
gr.HTML(FONT)
gr.HTML(TITLE)
gr.HTML(HEADER)
gr.HTML(value=get_next_update_div(current_block, next_epoch_block))
gr.Label(
value={
f"{c.namespace}/{c.name} ({c.commit[0:8]}) · (τ{round(c.emission, 2):,})": c.incentive
for c in model_data
if c.incentive
},
num_top_classes=10,
)
with gr.Accordion("Evaluation Stats"):
gr.HTML(EVALUATION_HEADER)
show_stale = gr.Checkbox(label="Show Stale", interactive=True)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_data(model_data, scores, show_stale.value),
headers=["Name", "Win Rate", "Average Loss", "Weight", "UID", "Block"],
datatype=["markdown", "number", "number", "number", "number", "number"],
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
gr.HTML(EVALUATION_DETAILS)
show_stale.change(lambda stale: leaderboard_data(model_data, scores, stale), inputs=[show_stale], outputs=leaderboard_table)
with gr.Accordion("Validator Stats"):
gr.components.Dataframe(
value=[
[uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)]
+ [validator_df[uid][-1].get(c.uid) for c in model_data if c.incentive]
for uid, _ in sorted(
zip(
validator_df.keys(),
[validator_df[x][1] for x in validator_df.keys()],
),
key=lambda x: x[1],
reverse=True,
)
],
headers=["UID", "Stake (τ)", "V-Trust"]
+ [
f"{c.namespace}/{c.name} ({c.commit[0:8]})"
for c in model_data
if c.incentive
],
datatype=["number", "number", "number"]
+ ["number" for c in model_data if c.incentive],
interactive=False,
visible=True,
)
gr.HTML(value=get_last_updated_div())
scheduler = BackgroundScheduler()
scheduler.add_job(
restart_space, "interval", seconds=60 * 30
) # restart every 15 minutes
scheduler.start()
demo.launch()
main()