withana's picture
initial commit
c57ad5c
raw
history blame
1.09 kB
import torch
import torch.nn as nn
import torchvision.transforms as transforms
class Encoder(nn.Module):
def __init__(self, in_channels=1, out_channels=16, latent_dim=64, act_fn=nn.ReLU()):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1), # (480, 360)
act_fn,
nn.Conv2d(out_channels, out_channels, 3, padding=1),
act_fn,
nn.Conv2d(out_channels, 2 * out_channels, 3, padding=1, stride=2), # (240, 180)
act_fn,
nn.Conv2d(2 * out_channels, 2 * out_channels, 3, padding=1),
act_fn,
nn.Conv2d(2 * out_channels, 4 * out_channels, 3, padding=1, stride=2), # (120, 90)
act_fn,
nn.Conv2d(4 * out_channels, 4 * out_channels, 3, padding=1),
act_fn,
nn.Flatten(),
nn.Linear(4 * out_channels * 120 * 90, latent_dim),
act_fn
)
def forward(self, x):
x = x.view(-1, 1, 480, 360)
output = self.net(x)
return output