Upload data_processing.py
Browse files- data_processing.py +107 -0
data_processing.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchvision
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
from torch.nn.utils.rnn import pad_sequence
|
5 |
+
|
6 |
+
class AddGaussianNoise(object):
|
7 |
+
def __init__(self, mean=0., std=1., thresh=0.2):
|
8 |
+
self.mean = mean
|
9 |
+
self.std = std
|
10 |
+
self.thresh = thresh
|
11 |
+
|
12 |
+
def __call__(self, tensor):
|
13 |
+
noise = torch.zeros_like(tensor)
|
14 |
+
noise[tensor>self.thresh] = 1
|
15 |
+
noise *= torch.randn(tensor.size()) * self.std + self.mean
|
16 |
+
return tensor + noise
|
17 |
+
|
18 |
+
def __repr__(self):
|
19 |
+
return self.__class__.__name__ + f'(mean={self.mean}, std={self.std})'
|
20 |
+
|
21 |
+
|
22 |
+
class TextProcessor:
|
23 |
+
def __init__(self, alphabet):
|
24 |
+
self.alphabet = alphabet
|
25 |
+
self.pad_token = "[PAD]"
|
26 |
+
self.stoi = {s: i for i, s in enumerate(self.alphabet,1)}
|
27 |
+
self.stoi[self.pad_token] = 0
|
28 |
+
self.itos = {i: s for s, i in self.stoi.items()}
|
29 |
+
|
30 |
+
def encode(self, label):
|
31 |
+
return [self.stoi[s] for s in label]
|
32 |
+
|
33 |
+
def decode(self, ids):
|
34 |
+
return ''.join([self.itos[i] for i in ids])
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return len(self.alphabet) + 1
|
38 |
+
|
39 |
+
transform_train = torchvision.transforms.Compose(
|
40 |
+
[
|
41 |
+
torchvision.transforms.Grayscale(),
|
42 |
+
torchvision.transforms.ToTensor(),
|
43 |
+
torchvision.transforms.RandomApply([
|
44 |
+
torchvision.transforms.RandomAdjustSharpness(sharpness_factor=80),
|
45 |
+
AddGaussianNoise(mean=1, std=0.005, thresh=0.3),
|
46 |
+
])
|
47 |
+
]
|
48 |
+
)
|
49 |
+
|
50 |
+
transform_eval = torchvision.transforms.Compose(
|
51 |
+
[
|
52 |
+
torchvision.transforms.Grayscale(),
|
53 |
+
torchvision.transforms.ToTensor()
|
54 |
+
]
|
55 |
+
)
|
56 |
+
|
57 |
+
class CRNNDataset(Dataset):
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
height,
|
61 |
+
text_processor:TextProcessor,
|
62 |
+
transforms:torchvision.transforms,
|
63 |
+
dataset=None
|
64 |
+
) -> None:
|
65 |
+
super().__init__()
|
66 |
+
|
67 |
+
self.height = height
|
68 |
+
self.transform = transforms
|
69 |
+
self.dataset = dataset
|
70 |
+
|
71 |
+
self.text_processor = text_processor
|
72 |
+
|
73 |
+
def __len__(self):
|
74 |
+
return len(self.dataset)
|
75 |
+
|
76 |
+
def __getitem__(self, idx):
|
77 |
+
dset = self.dataset[idx]
|
78 |
+
image, text = dset['image'], dset['text']
|
79 |
+
label = torch.tensor(self.text_processor.encode(text), dtype=torch.long)
|
80 |
+
original_width, original_height = image.size
|
81 |
+
new_width = int(self.height * original_width / original_height) # Calculate width to preserve aspect ratio
|
82 |
+
image = image.resize((new_width, self.height))
|
83 |
+
image = self.transform(image)
|
84 |
+
return image, label
|
85 |
+
|
86 |
+
|
87 |
+
def collate_fn(batch):
|
88 |
+
images, labels = zip(*batch)
|
89 |
+
|
90 |
+
max_h = max(img.size(1) for img in images)
|
91 |
+
max_w = max(img.size(2) for img in images)
|
92 |
+
|
93 |
+
padded_images = []
|
94 |
+
|
95 |
+
for img in images:
|
96 |
+
h, w = img.size(1), img.size(2)
|
97 |
+
padding = (0, max_w - w, 0, max_h - h) # left, right, top, bottom
|
98 |
+
padded_img = torch.nn.functional.pad(img, padding, mode='constant', value=0)
|
99 |
+
padded_images.append(padded_img)
|
100 |
+
|
101 |
+
images = torch.stack(padded_images, 0)
|
102 |
+
|
103 |
+
target_lengths = torch.tensor([len(label) for label in labels]).long()
|
104 |
+
|
105 |
+
labels = pad_sequence(labels, batch_first=True, padding_value=0)
|
106 |
+
|
107 |
+
return images, labels, target_lengths
|