Ransaka commited on
Commit
ba3d672
·
verified ·
1 Parent(s): 197cbd6

Upload data_processing.py

Browse files
Files changed (1) hide show
  1. data_processing.py +107 -0
data_processing.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torchvision
2
+ import torch
3
+ from torch.utils.data import Dataset
4
+ from torch.nn.utils.rnn import pad_sequence
5
+
6
+ class AddGaussianNoise(object):
7
+ def __init__(self, mean=0., std=1., thresh=0.2):
8
+ self.mean = mean
9
+ self.std = std
10
+ self.thresh = thresh
11
+
12
+ def __call__(self, tensor):
13
+ noise = torch.zeros_like(tensor)
14
+ noise[tensor>self.thresh] = 1
15
+ noise *= torch.randn(tensor.size()) * self.std + self.mean
16
+ return tensor + noise
17
+
18
+ def __repr__(self):
19
+ return self.__class__.__name__ + f'(mean={self.mean}, std={self.std})'
20
+
21
+
22
+ class TextProcessor:
23
+ def __init__(self, alphabet):
24
+ self.alphabet = alphabet
25
+ self.pad_token = "[PAD]"
26
+ self.stoi = {s: i for i, s in enumerate(self.alphabet,1)}
27
+ self.stoi[self.pad_token] = 0
28
+ self.itos = {i: s for s, i in self.stoi.items()}
29
+
30
+ def encode(self, label):
31
+ return [self.stoi[s] for s in label]
32
+
33
+ def decode(self, ids):
34
+ return ''.join([self.itos[i] for i in ids])
35
+
36
+ def __len__(self):
37
+ return len(self.alphabet) + 1
38
+
39
+ transform_train = torchvision.transforms.Compose(
40
+ [
41
+ torchvision.transforms.Grayscale(),
42
+ torchvision.transforms.ToTensor(),
43
+ torchvision.transforms.RandomApply([
44
+ torchvision.transforms.RandomAdjustSharpness(sharpness_factor=80),
45
+ AddGaussianNoise(mean=1, std=0.005, thresh=0.3),
46
+ ])
47
+ ]
48
+ )
49
+
50
+ transform_eval = torchvision.transforms.Compose(
51
+ [
52
+ torchvision.transforms.Grayscale(),
53
+ torchvision.transforms.ToTensor()
54
+ ]
55
+ )
56
+
57
+ class CRNNDataset(Dataset):
58
+ def __init__(
59
+ self,
60
+ height,
61
+ text_processor:TextProcessor,
62
+ transforms:torchvision.transforms,
63
+ dataset=None
64
+ ) -> None:
65
+ super().__init__()
66
+
67
+ self.height = height
68
+ self.transform = transforms
69
+ self.dataset = dataset
70
+
71
+ self.text_processor = text_processor
72
+
73
+ def __len__(self):
74
+ return len(self.dataset)
75
+
76
+ def __getitem__(self, idx):
77
+ dset = self.dataset[idx]
78
+ image, text = dset['image'], dset['text']
79
+ label = torch.tensor(self.text_processor.encode(text), dtype=torch.long)
80
+ original_width, original_height = image.size
81
+ new_width = int(self.height * original_width / original_height) # Calculate width to preserve aspect ratio
82
+ image = image.resize((new_width, self.height))
83
+ image = self.transform(image)
84
+ return image, label
85
+
86
+
87
+ def collate_fn(batch):
88
+ images, labels = zip(*batch)
89
+
90
+ max_h = max(img.size(1) for img in images)
91
+ max_w = max(img.size(2) for img in images)
92
+
93
+ padded_images = []
94
+
95
+ for img in images:
96
+ h, w = img.size(1), img.size(2)
97
+ padding = (0, max_w - w, 0, max_h - h) # left, right, top, bottom
98
+ padded_img = torch.nn.functional.pad(img, padding, mode='constant', value=0)
99
+ padded_images.append(padded_img)
100
+
101
+ images = torch.stack(padded_images, 0)
102
+
103
+ target_lengths = torch.tensor([len(label) for label in labels]).long()
104
+
105
+ labels = pad_sequence(labels, batch_first=True, padding_value=0)
106
+
107
+ return images, labels, target_lengths