Spaces:
Sleeping
Sleeping
RaniRahbani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,49 +2,41 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
"""
|
5 |
-
For more information on
|
6 |
-
https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
"""
|
8 |
client = InferenceClient("unsloth/Llama-3.2-1B-Instruct")
|
9 |
|
10 |
|
11 |
def respond(
|
12 |
message,
|
13 |
-
history: list[tuple[str, str]]
|
|
|
|
|
|
|
|
|
14 |
):
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
"nutrition, and healthy eating habits. Answer questions thoroughly with scientifically "
|
22 |
-
"backed advice, practical tips, and easy-to-understand explanations. Keep in mind that "
|
23 |
-
"your role is to assist, not replace a registered dietitian, so kindly remind users to "
|
24 |
-
"consult a professional for personalized advice when necessary."
|
25 |
-
)
|
26 |
-
|
27 |
-
# Define model parameters
|
28 |
max_tokens = 512
|
29 |
temperature = 0.7
|
30 |
top_p = 0.95
|
31 |
-
|
32 |
-
# Initialize the message history with the system message
|
33 |
messages = [{"role": "system", "content": system_message}]
|
34 |
|
35 |
-
# Add previous history to the message chain
|
36 |
for val in history:
|
37 |
if val[0]:
|
38 |
messages.append({"role": "user", "content": val[0]})
|
39 |
if val[1]:
|
40 |
messages.append({"role": "assistant", "content": val[1]})
|
41 |
|
42 |
-
# Append the new user message
|
43 |
messages.append({"role": "user", "content": message})
|
44 |
|
45 |
response = ""
|
46 |
|
47 |
-
# Generate the response in a streaming fashion
|
48 |
for message in client.chat_completion(
|
49 |
messages,
|
50 |
max_tokens=max_tokens,
|
@@ -53,10 +45,30 @@ def respond(
|
|
53 |
top_p=top_p,
|
54 |
):
|
55 |
token = message.choices[0].delta.content
|
|
|
56 |
response += token
|
57 |
yield response
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def default_message():
|
61 |
"""Function to return initial default message."""
|
62 |
return [("Hi there! I'm your Dietician Assistant, here to help with general advice "
|
@@ -65,11 +77,27 @@ def default_message():
|
|
65 |
|
66 |
# Set up the Gradio ChatInterface with an initial default message
|
67 |
with gr.Blocks() as demo:
|
68 |
-
chatbot = gr.ChatInterface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Display the default message on load
|
71 |
gr.State(default_message()) # Store initial chat history
|
72 |
chatbot.history = default_message() # Set the chat history to show the greeting
|
73 |
|
|
|
|
|
74 |
if __name__ == "__main__":
|
75 |
-
demo.launch()
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
"""
|
5 |
+
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
6 |
"""
|
7 |
client = InferenceClient("unsloth/Llama-3.2-1B-Instruct")
|
8 |
|
9 |
|
10 |
def respond(
|
11 |
message,
|
12 |
+
history: list[tuple[str, str]],
|
13 |
+
# system_message,
|
14 |
+
# max_tokens,
|
15 |
+
# temperature,
|
16 |
+
# top_p,
|
17 |
):
|
18 |
+
|
19 |
+
system_message = "You are a Dietician Assistant specializing in providing general guidance on diet, "
|
20 |
+
"nutrition, and healthy eating habits. Answer questions thoroughly with scientifically "
|
21 |
+
"backed advice, practical tips, and easy-to-understand explanations. Keep in mind that "
|
22 |
+
"your role is to assist, not replace a registered dietitian, so kindly remind users to "
|
23 |
+
"consult a professional for personalized advice when necessary."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
max_tokens = 512
|
25 |
temperature = 0.7
|
26 |
top_p = 0.95
|
27 |
+
|
|
|
28 |
messages = [{"role": "system", "content": system_message}]
|
29 |
|
|
|
30 |
for val in history:
|
31 |
if val[0]:
|
32 |
messages.append({"role": "user", "content": val[0]})
|
33 |
if val[1]:
|
34 |
messages.append({"role": "assistant", "content": val[1]})
|
35 |
|
|
|
36 |
messages.append({"role": "user", "content": message})
|
37 |
|
38 |
response = ""
|
39 |
|
|
|
40 |
for message in client.chat_completion(
|
41 |
messages,
|
42 |
max_tokens=max_tokens,
|
|
|
45 |
top_p=top_p,
|
46 |
):
|
47 |
token = message.choices[0].delta.content
|
48 |
+
|
49 |
response += token
|
50 |
yield response
|
51 |
|
52 |
|
53 |
+
"""
|
54 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
55 |
+
"""
|
56 |
+
# demo = gr.ChatInterface(
|
57 |
+
# respond,
|
58 |
+
# # additional_inputs=[
|
59 |
+
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
60 |
+
# # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
61 |
+
# # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
62 |
+
# # gr.Slider(
|
63 |
+
# # minimum=0.1,
|
64 |
+
# # maximum=1.0,
|
65 |
+
# # value=0.95,
|
66 |
+
# # step=0.05,
|
67 |
+
# # label="Top-p (nucleus sampling)",
|
68 |
+
# # ),
|
69 |
+
# # ],
|
70 |
+
# )
|
71 |
+
|
72 |
def default_message():
|
73 |
"""Function to return initial default message."""
|
74 |
return [("Hi there! I'm your Dietician Assistant, here to help with general advice "
|
|
|
77 |
|
78 |
# Set up the Gradio ChatInterface with an initial default message
|
79 |
with gr.Blocks() as demo:
|
80 |
+
chatbot = gr.ChatInterface(
|
81 |
+
respond,
|
82 |
+
# additional_inputs=[
|
83 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
84 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
85 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
86 |
+
# gr.Slider(
|
87 |
+
# minimum=0.1,
|
88 |
+
# maximum=1.0,
|
89 |
+
# value=0.95,
|
90 |
+
# step=0.05,
|
91 |
+
# label="Top-p (nucleus sampling)",
|
92 |
+
# ),
|
93 |
+
# ],
|
94 |
+
)
|
95 |
|
96 |
# Display the default message on load
|
97 |
gr.State(default_message()) # Store initial chat history
|
98 |
chatbot.history = default_message() # Set the chat history to show the greeting
|
99 |
|
100 |
+
|
101 |
+
|
102 |
if __name__ == "__main__":
|
103 |
+
demo.launch()
|