Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -50,6 +50,7 @@ def retrieve_thoughts(query, n):
|
|
50 |
df = pd.DataFrame([dict(doc[0])['metadata'] for doc in docs_with_score], )
|
51 |
df = pd.concat((df, pd.DataFrame([dict(doc[0])['page_content'] for doc in docs_with_score], columns = ['page_content'])), axis = 1)
|
52 |
df = pd.concat((df, pd.DataFrame([doc[1] for doc in docs_with_score], columns = ['score'])), axis = 1)
|
|
|
53 |
|
54 |
# TO-DO: What if user query doesn't match what we provide as documents
|
55 |
|
@@ -58,10 +59,10 @@ def retrieve_thoughts(query, n):
|
|
58 |
# tier_2 = df[(df['score'] < 0.95) * (df["score"] > 0.7)]
|
59 |
|
60 |
|
61 |
-
chunks_1 = tier_1.groupby(['title', 'url']).apply(lambda x: "
|
62 |
tier_1_adjusted = tier_1.groupby(['title', 'url']).first().reset_index()[['title', 'url', 'score']]
|
63 |
tier_1_adjusted['ref'] = range(1, len(tier_1_adjusted) + 1 )
|
64 |
-
tier_1_adjusted['
|
65 |
|
66 |
# chunks_2 = tier_2.groupby(['title', 'url', '_id']).apply(lambda x: "\n...\n".join(x.sort_values('id')['page_content'].values)).values
|
67 |
# tier_2_adjusted = tier_2.groupby(['title', 'url', '_id']).first().reset_index()[['_id', 'title', 'url']]
|
@@ -97,7 +98,7 @@ def qa_retrieve(query, llm):
|
|
97 |
tier_1 = thoughts['tier 1']
|
98 |
# tier_2 = thoughts['tier 2']
|
99 |
|
100 |
-
reference = tier_1[['ref', 'url', 'title', '
|
101 |
|
102 |
# tier_1 = list(tier_1.apply(lambda x: f"[{int(x['ref'])}] title: {x['title']}\n Content: {x.content}", axis = 1).values)
|
103 |
# print(len(tier_1))
|
|
|
50 |
df = pd.DataFrame([dict(doc[0])['metadata'] for doc in docs_with_score], )
|
51 |
df = pd.concat((df, pd.DataFrame([dict(doc[0])['page_content'] for doc in docs_with_score], columns = ['page_content'])), axis = 1)
|
52 |
df = pd.concat((df, pd.DataFrame([doc[1] for doc in docs_with_score], columns = ['score'])), axis = 1)
|
53 |
+
df.sort_values("score", inplace = True)
|
54 |
|
55 |
# TO-DO: What if user query doesn't match what we provide as documents
|
56 |
|
|
|
59 |
# tier_2 = df[(df['score'] < 0.95) * (df["score"] > 0.7)]
|
60 |
|
61 |
|
62 |
+
chunks_1 = tier_1.groupby(['title', 'url', ]).apply(lambda x: {f"chunk_{i}": row for i, row in enumerate(x.sort_values('id')[['score','page_content']].to_dict('records'))}).values
|
63 |
tier_1_adjusted = tier_1.groupby(['title', 'url']).first().reset_index()[['title', 'url', 'score']]
|
64 |
tier_1_adjusted['ref'] = range(1, len(tier_1_adjusted) + 1 )
|
65 |
+
tier_1_adjusted['chunks'] = chunks_1
|
66 |
|
67 |
# chunks_2 = tier_2.groupby(['title', 'url', '_id']).apply(lambda x: "\n...\n".join(x.sort_values('id')['page_content'].values)).values
|
68 |
# tier_2_adjusted = tier_2.groupby(['title', 'url', '_id']).first().reset_index()[['_id', 'title', 'url']]
|
|
|
98 |
tier_1 = thoughts['tier 1']
|
99 |
# tier_2 = thoughts['tier 2']
|
100 |
|
101 |
+
reference = tier_1[['ref', 'url', 'title', 'chunks']].to_dict('records')
|
102 |
|
103 |
# tier_1 = list(tier_1.apply(lambda x: f"[{int(x['ref'])}] title: {x['title']}\n Content: {x.content}", axis = 1).values)
|
104 |
# print(len(tier_1))
|