Spaces:
Running
Running
import gradio as gr | |
# import pandas as pd | |
import polars as pl | |
from math import ceil | |
import os | |
from data import df, pitch_stats, league_pitch_stats, player_df | |
from gradio_function import * | |
from translate import jp_pitch_to_en_pitch, max_pitch_types | |
os.makedirs('files', exist_ok=True) | |
css = ''' | |
.pitch-usage {height: 256px} | |
.pitch-usage .js-plotly-plot {height: 100%} | |
.pitch-velo {height: 100px} | |
.pitch-velo .js-plotly-plot {height: 100%} | |
.pitch-loc {height: 320px} | |
.pitch-loc .js-plotly-plot {height: 100%} | |
.pitch-velo-summary div.plotly-notifier {visibility: hidden} | |
''' | |
with gr.Blocks( | |
css=css | |
) as demo: | |
gr.Markdown(''' | |
# NPB data visualization demo | |
[Data from SportsNavi](https://sports.yahoo.co.jp/) | |
''') | |
source_df = gr.State(df) | |
app_df = gr.State(df) | |
app_league_df = gr.State(df) | |
app_pitch_stats = gr.State(pitch_stats) | |
app_league_pitch_stats = gr.State(league_pitch_stats) | |
with gr.Row(): | |
player = gr.Dropdown(value=None, choices=sorted(player_df.filter(pl.col('name').is_not_null())['name'].to_list()), label='Player') | |
handedness = gr.Radio(value='Both', choices=['Both', 'Left', 'Right'], type='value', interactive=False, label='Batter Handedness') | |
# preview = gr.DataFrame() | |
download_file = gr.DownloadButton(label='Download player data') | |
with gr.Group(): | |
with gr.Row(): | |
usage = gr.Plot(label='Pitch usage') | |
velo_summary = gr.Plot(label='Velocity summary', elem_classes='pitch-velo-summary') | |
loc_summary = gr.Plot(label='Overall location') | |
max_locs = len(jp_pitch_to_en_pitch) | |
locs_per_row = 4 | |
max_rows = ceil(max_locs/locs_per_row) | |
gr.Markdown(''' | |
## Pitch Locations | |
Pitcher's persective | |
<br> | |
`NPB` refers to the top 10% of pitches thrown across the league with the current search constraints e.g. handedness | |
<br> | |
Note: To speed up the KDE, we restrict the league-wide pitches to 5,000 pitches | |
''') | |
pitch_rows = [] | |
pitch_groups = [] | |
pitch_names = [] | |
pitch_infos = [] | |
pitch_velos = [] | |
pitch_locs = [] | |
for row in range(max_rows): | |
visible = row==0 | |
pitch_row = gr.Row(visible=visible) | |
pitch_rows.append(pitch_row) | |
with pitch_row: | |
_locs_per_row = locs_per_row if row < max_rows-1 else max_locs - locs_per_row * (max_rows - 1) | |
for col in range(_locs_per_row): | |
with gr.Column(min_width=256): | |
pitch_group = gr.Group(visible=visible) | |
pitch_groups.append(pitch_group) | |
with pitch_group: | |
pitch_names.append(gr.Markdown(f'### Pitch {col+1}', visible=visible)) | |
pitch_infos.append(gr.DataFrame(pl.DataFrame([{'Whiff%': None, 'CSW%': None}]), interactive=False, visible=visible)) | |
pitch_velos.append(gr.Plot(show_label=False, elem_classes='pitch-velo', visible=visible)) | |
pitch_locs.append(gr.Plot(label='Pitch Location', elem_classes='pitch-loc', visible=visible)) | |
gr.Markdown('## Pitch Velocity') | |
velo_stats = gr.DataFrame(pl.DataFrame([{'Avg. Velo': None, 'League Avg. Velo': None}]), interactive=False, label='Pitch Velocity') | |
( | |
player | |
.input(update_dfs, inputs=[player, handedness, source_df], outputs=[app_df, app_league_df, app_pitch_stats, app_league_pitch_stats]) | |
.then(lambda : gr.update(value='Both', interactive=True), outputs=handedness) | |
) | |
handedness.input(update_dfs, inputs=[player, handedness, source_df], outputs=[app_df, app_league_df, app_pitch_stats, app_league_pitch_stats]) | |
# app_df.change(preview_df, inputs=app_df, outputs=preview) | |
# app_df.change(set_download_file, inputs=app_df, outputs=download_file) | |
# app_df.change(plot_usage, inputs=[app_df, player], outputs=usage) | |
# app_df.change(plot_velo_summary, inputs=[app_df, app_league_df, player], outputs=velo_summary) | |
# app_df.change(lambda df: plot_loc(df), inputs=app_df, outputs=loc_summary) | |
# app_df.change(plot_pitch_cards, inputs=[app_df, app_pitch_stats], outputs=pitch_rows+pitch_groups+pitch_names+pitch_infos+pitch_velos+pitch_locs) | |
app_pitch_stats.change(update_velo_stats, inputs=[app_pitch_stats, app_league_pitch_stats], outputs=velo_stats) | |
( | |
app_df | |
.change(set_download_file, inputs=app_df, outputs=download_file) | |
.then(plot_usage, inputs=[app_df, player], outputs=usage) | |
.then(plot_velo_summary, inputs=[app_df, app_league_df, player], outputs=velo_summary) | |
.then(lambda df: plot_loc(df), inputs=app_df, outputs=loc_summary) | |
.then(plot_pitch_cards, inputs=[app_df, app_league_df, app_pitch_stats], outputs=pitch_rows+pitch_groups+pitch_names+pitch_infos+pitch_velos+pitch_locs) | |
) | |
gr.Markdown('## Bugs and other notes') | |
with gr.Accordion('Click to open', open=False): | |
gr.Markdown(''' | |
- Y axis ticks messy when no velocity distribution is plotted | |
- DataFrame precision inconsistent | |
''' | |
) | |
demo.launch( | |
share=True, | |
debug=True | |
) | |