Spaces:
Sleeping
Sleeping
from flask import Flask, render_template, request, jsonify | |
import os | |
import torch | |
import whisper | |
import re | |
from pydub import AudioSegment | |
from pydub.silence import detect_nonsilent | |
from waitress import serve | |
from gtts import gTTS | |
app = Flask(__name__) | |
# Load Whisper Model (Higher Accuracy) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
whisper_model = whisper.load_model("medium") # Change to "large" for even better accuracy | |
# Function to generate audio prompts | |
def generate_audio_prompt(text, filename): | |
tts = gTTS(text=text, lang="en") | |
tts.save(os.path.join("static", filename)) | |
# Generate voice prompts | |
prompts = { | |
"welcome": "Welcome to Biryani Hub.", | |
"ask_name": "Tell me your name.", | |
"ask_email": "Please provide your email address.", | |
"thank_you": "Thank you for registration." | |
} | |
for key, text in prompts.items(): | |
generate_audio_prompt(text, f"{key}.mp3") | |
# Symbol mapping for proper recognition | |
SYMBOL_MAPPING = { | |
"at the rate": "@", | |
"at": "@", | |
"dot": ".", | |
"underscore": "_", | |
"hash": "#", | |
"plus": "+", | |
"dash": "-", | |
"comma": ",", | |
"space": " " | |
} | |
# Function to clean and format transcribed text | |
def clean_transcription(text): | |
text = text.lower().strip() | |
for word, symbol in SYMBOL_MAPPING.items(): | |
text = text.replace(word, symbol) | |
return text.capitalize() | |
# Function to detect speech duration (trim silence) | |
def trim_silence(audio_path): | |
audio = AudioSegment.from_wav(audio_path) | |
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) | |
if nonsilent_parts: | |
start_trim = nonsilent_parts[0][0] | |
end_trim = nonsilent_parts[-1][1] | |
trimmed_audio = audio[start_trim:end_trim] | |
trimmed_audio.export(audio_path, format="wav") # Save trimmed audio | |
def index(): | |
return render_template("index.html") | |
def transcribe(): | |
if "audio" not in request.files: | |
return jsonify({"error": "No audio file provided"}), 400 | |
audio_file = request.files["audio"] | |
audio_path = os.path.join("static", "temp.wav") | |
audio_file.save(audio_path) | |
try: | |
trim_silence(audio_path) # Remove silence before processing | |
# Transcribe using Whisper | |
result = whisper_model.transcribe(audio_path, language="english") | |
transcribed_text = clean_transcription(result["text"]) | |
return jsonify({"text": transcribed_text}) | |
except Exception as e: | |
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500 | |
# Run Waitress Production Server | |
if __name__ == "__main__": | |
serve(app, host="0.0.0.0", port=7860) | |